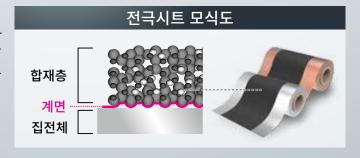


ELECTRODE RESISTANCE MEASUREMENT SYSTEM RM2610

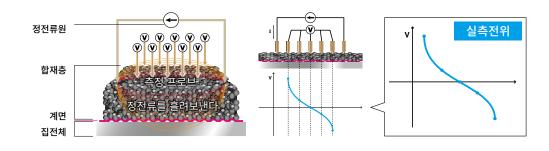


LIB 전극시트의 합재층 저항과 계면저항을 수치화

LIB 의 진화를 가속화

RM2610 은 LIB 양극 •음극시트의 저항을 합재층 저항과 계면저항*으로 분리해 수 치화합니다. 이 수치는 LIB 의 진화 • 개선 에 도움이 됩니다.

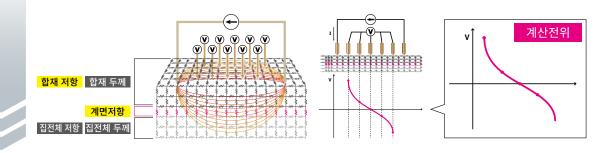
※ 집전체와 합재층의 접촉저항



역 문제 해석에 의한 합재층 저항률과 계면저항의 분리 계산

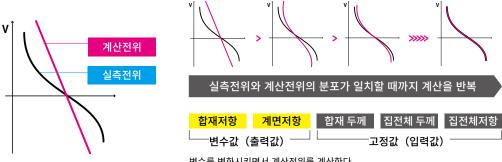
STEP

" 실측전위"를 취득


전극시트에 정전류를 흘려보내 표면에 발생하는 전위분포를 다점 계측합니다.

STEP

모델링과"계산전위"를 계산


전극시트를 모델화시켜 표면에 발생하는 전위를 계산으로 구합니다.

STEP 3

계산전위를 반복 계산

"합재저항" "계면저항"을 변수로 해서 실측전위와 계산전위가 일치할 때까지 계산전위를 반복해 계산합니다. 실측전위와 계산전위가 일치했을 때의 변수를 결과로 출력합니다.

변수를 변화시키면서 계산전위를 계산한다.

LIB 의 진화 • 개선

볼 수 없었던 저항을 수치화해 개발시간을 단축

실측 예

합재가 차이나는 시트에서 저항의 차를 확인할 수 있습니다. 전극시트의 균일성을 확인할 수 있습니다

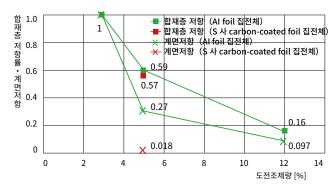
시료 : 양극	
종류	양극 (코발트산 리튬)
기판 재료	알루미늄박(15 μ m)체적 저항률 2.7E-06 Ω cm
활물질	LiCoO2
Weight	110.2g/m ²
총 두께	92.1 μ m
밀도	2.95g/ cm³

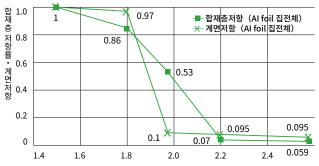
시료: 양극	
종류	양극 (NMC 1:1:1)
기판 재료	알루미늄박(15 μ m)체적 저항률 2.7E-06 Ω cm
활물질	NMC 1:1:1
Weight	102.1g/ m²
총 두께	54.8 μ m
밀도	2.75 g/ cm

측정결과: 전극시트의 6 곳을 측정

A	В	C
D	E	F
	전=	극시트

측정 부분	합재층 저항률 [Ω cm]	계면저항 [Ω cm²]
Α	4.926E+00	1.583E+00
В	4.894E+00	1.824E+00
С	5.182E+00	1.647E+00
D	4.938E+00	1.390E+00
Е	4.750E+00	1.433E+00
F	5.312E+00	1.147E+00


측정결과: 전극시트의 6 곳을 측정


A	В	C
D	E	F
	전=	극시트

측정 부분	합재층 저항률 [Ω cm]	계면저항 [Ω cm²]
Α	1.291E+01	1.357E+01
В	1.222E+01	1.964E+01
С	1.274E+01	2.554E+01
D	1.269E+01	1.180E+01
E	1.361E+01	1.980E+01
F	1.315E+01	2.066E+01

운용 예

재료, 조성, 제조조건에 따른 합재층 저항, 계면저항의 변화가 보입니다

계면저항을 낮추는 적절한 도전조제량과, carbon-coated foil의 계면저항 효과를 알 수 있습니다

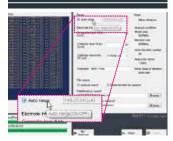
도전조제량의 변화에 따른 합재층 저항률과 계면저항의 변화와, carbon-coated film의 유무에 따른 계면저항의 변화를 확인할 수 있습니다. carbon-coated film의 유무에 상관없이, 합재층 저항률은 동일한 값을 보인다는 점에서, 합재층 저항률과 계면저항은 분리해서 구해진다는 것을 확인할 수 있습니다.

전극밀도의 계면저항에 대한 영향을 알 수 있습니다

프레스압을 바꾸어 전극밀도를 변화시킨 전극을 측정했습니다. 프레스압이 높고 전극밀도가 커질수록 합재층의 체적 저항률과 계면저항이 모두 작아지는데, 계면저항은 어느 시점에서 급격하 게 떨어집니다. 최저값을 찍은 후에는 거의 일정한 값이 되는데, 이를 바탕으로 적정값을 정할 수 있습니다.

※좌측 상단 그래프는 도전조제량 3%, 좌측 하단 그래프는 전극밀도 1. 5g /cc 에서의 합재층 저항률 , 계면저항을 1로 해서 상대화시켰습니다 .

전극저항 측정 시스템 RM2610 의 구성



측정전 점검

프로브 점검보드를 사용해 프로브의 상태를 확인할 수 있습니다 .

사용자 인터페이스

항목에 커서를 맞추면 항목설명, 입 력범위 등 가이던스가 표시됩니다.

안전성을 고려한 잠금기능

잠금 레버를 내쪽으로 당기면 프로 브를 내리는게 가능해집니다 . 의도 치못한 조작으로 프로브가 내려가는 것을 방지합니다 .

옵션

프로브의 유지보수

유지보수 도구 RM9006

디지털 마이크로스코프,블로어, 클리닝 필터 세트

사양

측정대상	리튬이온 2 차전지의 양극시트 및 음극시트	
측정항목	합재층 체적 저항률 [Ω cm] 합재층과 집전체 사이의 계면저항(접촉저항)[Ω cm 2]	
연산방법	유한체적법에 의한 전위분포의 역 문제 해석	
연산에 필요한 정보	•합재층 두께 [μ m](한쪽면) •집전체 두께 [μ m] •집전체 체적 저항률 [Ω cm]	

% RM2611 전극저항계는 정기적인 교정이 필요합니다 . 교정에 대해서는 당사로 문의해 주십시오 .

측정시간	• 콘택트 체크+전위 측정 약 30s • 연산 약 35s (CPU: Intel core i5-7200U 탑재된 PC 에서) ※측정대상 및 PC 의 처리성능에 따라 측정시간이 달라짐
측정전류	10 μ A(최소) ~ 10mA(최대)
프로브 수	46 개
권장 PC 스펙	CPU:4 thread 이상 메모리:8 GB 이상 권장(남은 공간 4 GB 필요) OS:Windows7 Pro (64bit), Windows8 Pro (64bit), Windows10 Pro (64bit)
온도측정기능	테스트 픽스처 주변의 온도를 측정
부속품	온도 프로브 Z2001, USB 케이블, USB 라이센스 키, 프로브 점검보드, 전원 코드, 사용설명서

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.

www.hiokikorea.com 대표메일 info-kr@hioki.co.jp 서울사무소 서울특별시 강남구 역삼동 707-34 한신인터밸리 24 동관 1705 호

TEL 02-2183-8847 FAX 02-2183-3360

대전사무소 대전광역시 유성구 테크노 2로 187, 314호 (용산동, 미건테크노월드 2차)

TEL 042-936-1281 FAX 042-936-1284

대구사무소 대구광역시 동구 동대구로 457 809호 (대구상공회의소 건물)

TEL 053-752-8847 FAX 053-752-8848

부산사무소 부산광역시 동구 중앙대로 240 현대해상 부산사옥 10 층

TEL 051-464-8847 FAX 051-462-3360

수리센터 직통번호 TEL 042-936-1283