

RM3542C

HIOKI

RM3542C-1
RM3542C-2
RM3542C-3
RM3542C-4
RM3542C-5

Instruction Manual

RESISTANCE METER

Check for the latest edition and
other language versions.

**Read carefully before use.
Keep for future reference.**

Measurement Flow	► p.3	Maintenance and Service	► p.221
Safety Information	► p.7	Error Displays and Solutions	► p.223
Names and Functions of the Parts	► p.17		

Contents

Task-Oriented Reference	1
About Model Names	2
Measurement Flow	3
Introduction	4
Verifying Package Contents	5
Safety Information	7
Operating Precautions	9

Chapter 1 Overview 13

1.1 Product Overview and Features	13
■ Block Diagram	16
1.2 Names and Functions of the Parts	17
1.3 Screen Organization	19

Chapter 2 Measurement Preparations 23

2.1 Connecting the Power Cord	24
2.2 Connecting Measurement Probes and Test Fixtures	25
■ Making Your Own Measurement Probes ..	26
2.3 Turning the Power On and Off	27

Chapter 3 Measurement Settings(Basic Measurements) 29

3.1 Pre-Operation Inspection	29
3.2 Measuring Object Types	30
3.3 Setting the Measurement Speed	31
3.4 Setting Measurement Start Conditions (Trigger Source)	33
3.5 Selecting the Measurement Range	34
3.6 Measuring with Two-terminal Wiring (Zero Adjustment)	36
3.7 Judging Measurement Values (Comparator Function)	38
■ Enabling and Disabling the Comparator Function	39
■ Decide According to Reference Value and Tolerance (REF% Mode)	40

■ Decide According to Upper/Lower Thresholds (ABS Mode)	42
3.8 Confirming Faulty Measurements	44

Chapter 4 Customizing Measurement Settings 47

4.1 Making Range-Specific Measurement Settings	47
4.2 Setting Pre-Measurement Delay	48
4.3 Compensating Measured Values (Scaling Function) (RM3542C-1, RM3542C-2 or RM3542C-3)	50
4.4 Setting the Measurement Integration Time Option	52
4.5 Average Function (RM3542C-3)	54
4.6 Checking for Poor or Improper Contact (Contact Check Function)	55
4.7 Improving Probe Contact (Contact Improvement function)	57
4.8 Detecting Measurement Voltage Faults (Voltage Level Monitor Function)	60
4.9 Applying Current Only When Measuring (Current Mode Setting)	61
4.10 Test for Short-Circuited Probe (Probe Short-Circuit Detection Function)	62
4.11 Comparing the Measurement Settings of Two Instruments (Settings Monitor Function)	64
4.12 Retrying Measurement After a Fault (Retry Function)	67
4.13 Limiting Measurement Voltage (Applied Voltage Limiter Function) (RM3542C-1, RM3542C-2 or RM3542C-3)	69
4.14 Maintaining Measurement Precision (Self-Calibration Function)	70
4.15 Compensating for Thermal EMF Offset (Offset Voltage Compensation - OVC) ..	70
4.16 Jumper Resistance Measurement Support Function (RM3542C-1, RM3542C-2 or RM3542C-3)	71
4.17 ΔR Function (RM3542C-3)	73
4.18 BIN Measurement Function (RM3542C-3)	78

Chapter 5 System Settings 79

5.1	Disabling and Enabling Key Operations	79
■	Disabling Key Operations (Key-Lock Function)	79
■	Re-Enabling Key Operations (Key-Lock Cancel)	80
5.2	Setting the Comparator Judgment and Key Beepers	81
■	Enabling or Disabling the Key Beeper	81
■	Setting the Comparator Judgment Beeper	82
5.3	Power Line Frequency Manual Setting	83
5.4	Preset Function (RM3542C-1, RM3542C-2 or RM3542C-3)	84
5.5	Setting the Clock	85
5.6	Adjusting Screen Contrast	86
5.7	Adjusting the Backlight	87
5.8	Initializing (Reset)	88
■	Default Settings	89

Chapter 6 Storing and Exporting Data 91

6.1	Storing Data at Specified Timing (Data Memory Function)	92
6.2	Store as soon as Measurement is Stable (Auto-Memory Function)	93
6.3	Performing Statistical Calculations on Measurement Values	96
■	Using Statistical Calculations	97
■	Confirming, Printing, and Erasing Statistical Calculation Results	98
6.4	Auto-Exporting Measurement Values (at End of Measurement) (Data Output Function)	99
6.5	Outputting Measured Values as Relative Values (Percentage Output Function) (RM3542C-1, RM3542C-2 or RM3542C-3)	100

Chapter 7 Printing 101

7.1	Connecting the Printer	101
■	Connecting the Printer to the Instrument	102
7.2	Setting the Instrument	103

7.3	Printing	105
■	Printing Measurement Values and Comparator Judgments	105
■	Printing Statistical Calculation Results	105

Chapter 8 External Control 107

8.1	Ext. I/O Connectors and Signals	107
■	Connector Type and Signal Pinouts	108
■	Signal Descriptions	110
8.2	Timing Chart	112
8.3	Internal Circuitry	115
■	Electrical Specifications	116
■	Connection Examples	117
8.4	Ext. I/O Settings	118
■	Setting the End-of-Measurement Signal Output (EOM Signal Setting)	118
■	Setting the Trigger Signal (TRIG) Logic	119
■	Stage Mismatch Prevention Function (RM3542C-1, RM3542C-2 or RM3542C-3)	120
8.5	Q&A Regarding External Control	121
8.6	Supplied Connector Assembly	122

Chapter 9 Communications (RS-232C/ GP-IB Interface) 123

9.1	Overview and Features of Interfaces	123
9.2	Specifications	124
9.3	Connecting	125
■	Using the RS-232C Interface	125
■	Using the GP-IB Interface (RM3542C-2 or RM3542C-5)	126
9.4	Configuring the Communications Protocol	127
■	Configuring RS-232C Interface Communications Protocol	127
■	Configuring the GP-IB Interface Communication Protocol (RM3542C-2 or RM3542C-5)	128
■	Set the Measurement Value Transmission for- mat (common for RS-232C and GP-IB)	129
9.5	Communication Methods	130
■	To Cancel the Remote Status (Enter the Local Status)	130
■	Message Format	131
■	Output Queue and Input Buffer	134

■ Status Byte Register	135	Appendix 9 Zero Adjustment.....	A 16
■ Event Registers	137		
■ Initialization Items	140		
■ Command Execution Time	141		
■ Errors During Communications	141		
9.6 Message List	142		
■ Shared Commands	142		
■ Device-Specific Commands	143		
9.7 Message Reference	151		
■ Message Reference Interpretation	151		
■ Shared Commands	152		
■ Device-Specific Commands	156		
9.8 Data exporting methods	184		
9.9 Sample Programs	186		
■ Using Visual Basic 5.0 or 6.0	186		
■ Create with Visual Basic 2005	196		
■ Sample Programs (Visual Basic 2005) ...	198		
9.10 Device Compliance Documents.....	200		

Index**Index 1****Chapter 10 Specifications 203****Chapter 11 Maintenance and Service 221**

11.1 Troubleshooting	221
■ Inspection and Repair	221
11.2 Cleaning	222
11.3 Error Displays and Solutions	223
11.4 Disposing of the Instrument	225
■ Removing the Lithium Battery	225

Appendix A 1

Appendix 1 Four-Terminal (Voltage-Drop) Method.....	A 1
Appendix 2 Effect of Thermal emf	A 2
Appendix 3 Unstable Measurement Values.	A 3
Appendix 4 Rack Mounting.....	A 8
Appendix 5 Dimensional diagram	A 10
Appendix 6 Calibration.....	A 11
Appendix 7 Adjustment.....	A 13
Appendix 8 Table of Comparison Commands ADEX AX-162D / for this instrument	A 14

Task-Oriented Reference

To minimize measurement error

- ▶ Setting the Measurement Speed (p. 31)
- ▶ Setting the measurement speed integration time option (p. 52)
- ▶ Measuring with Two-terminal Wiring (Zero Adjustment) (p. 36)

To judge measurement results

- ▶ Judging Measurement Values (Comparator Function) (p. 38)
- ▶ Comparing the Measurement Settings of Two Instruments (Settings Monitor Function) (p. 64)

To correct faulty measurements

- ▶ Confirming Faulty Measurements (p. 44)
- ▶ Improving Probe Contact (Contact Improvement function) (p. 57)

To enhance the reliability of inspection

- ▶ Checking for Poor or Improper Contact (Contact Check Function) (p. 55)
- ▶ Detecting Measurement Voltage Faults (Voltage Level Monitor Function) (p. 60)
- ▶ Test for Short-Circuited Probe (Probe Short-Circuit Detection Function) (p. 62)
- ▶ Comparing the Measurement Settings of Two Instruments (Settings Monitor Function) (p. 64)

To inspect the 03015 mm or 0201 mm (Imperial 008004) size components

- ▶ Limiting Measurement Voltage (Applied Voltage Limiter Function) (RM3542C-1, RM3542C-2 or RM3542C-3) (p. 69)

To automatically store measurement values

- ▶ Store as soon as Measurement is Stable (Auto-Memory Function) (p. 93)

To print measurement results

- ▶ Printing (p. 101)

To measure by connecting with PLC (Control equipment)

(PLC: Programmable Logic Controller)

- ▶ External Control (p. 107)
- ▶ Communications (RS-232C/ GP-IB Interface) (p. 123)

To connect to a computer

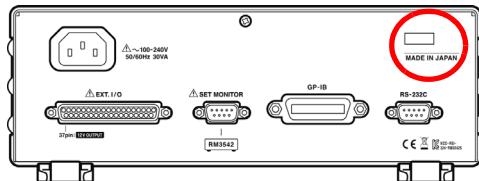
- ▶ Communications (RS-232C/ GP-IB Interface) (p. 123)

About Model Names

To enable auto-exporting measurement values to the computer

(Available only with RS-232C interface)

▶ Auto-Exporting Measurement Values (at End of Measurement) (Data Output Function) (p. 99)


To check operation

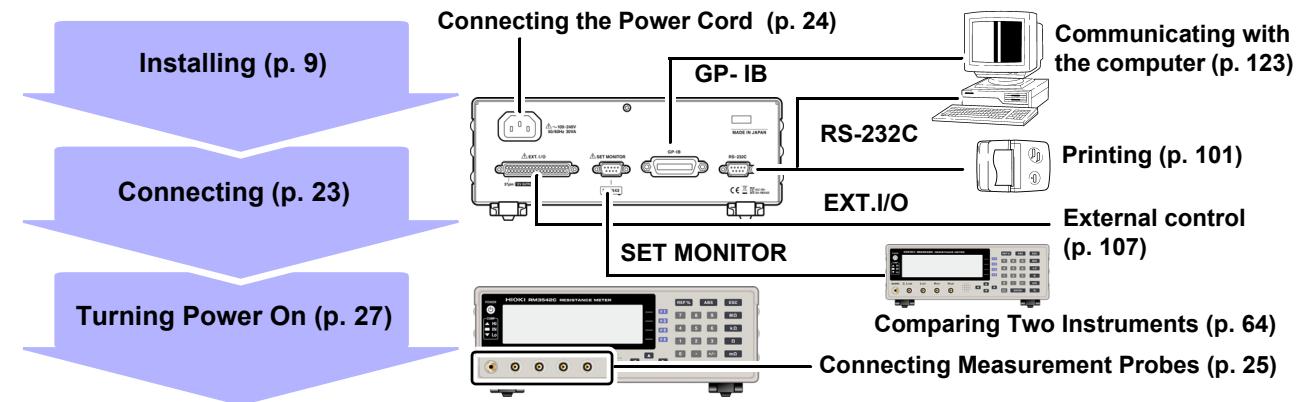
▶ Setting Measurement Start Conditions (Trigger Source) (p. 33)
Internal trigger [INT]

▶ Calibration (p. A11)

About Model Names

Please check the model name on the label.

Rear


Available: ✓, Not available: -

Functions	Model name		
	RM3542C-1 RM3542C-2	RM3542C-3	RM3542C-4 RM3542C-5
GP-IB (p. 123)	✓(RM3542C-2)	-	✓(RM3542C-5)
RS-232C (p. 123)	✓	✓	✓
Offset Voltage Compensation (p. 70)	✓	✓	✓
Low-power Resistance Measurement (p. 30)	✓	✓	✓
Intermediate Range (3-series Range)	✓	✓	-
Applied Voltage Limiter Function (p. 69)	✓	✓	-
Contact Improvement Function (p. 57)	✓	✓	✓
Scaling Function (p. 50)	✓	✓	-
Stage Mismatch Prevention Function (p. 120)	✓	✓	-
Percentage Output Function (p. 100)	✓	✓	-
Jumper Resistance Measurement Support Function (p. 71)	✓	✓	-
Preset Function (p. 84)	✓	✓	-
Average Function (p. 54)	-	✓	-
90-Day Accuracy (p. 218)	-	✓	-
ΔR Function (p. 73)	-	✓	-
BIN Measurement Function (p. 78)	-	✓	-
Comparator Resolution: 1 ppm (p. 41)	-	✓	-

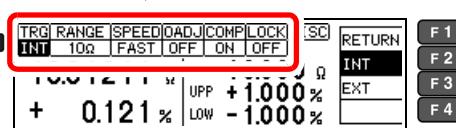
Measurement Flow

Be sure to read the "Operating Precautions" (p. 9) before use.

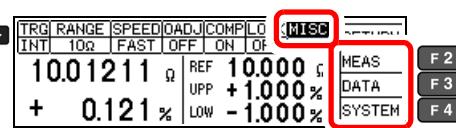
Installing, Connecting and Turning On

Settings of RM3542C

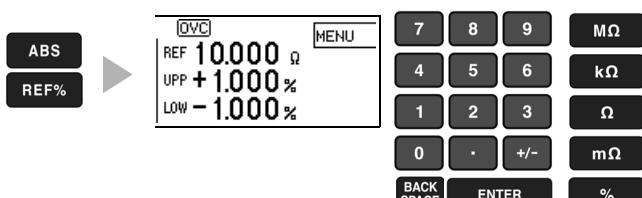
Setting measuring conditions (as needed)


Confirm the screen configuration (p. 19)

Confirm the initial setup (p. 89)


- Basic Settings (p. 29)
- Configure settings for your specific conditions (p. 47)
- System-related settings (p. 79)

When changing settings



Change basic settings such as measurement speed

Change detailed settings (measurement conditions and system-related settings)

Setting judgment criteria (p. 38)

Calculation, Printing, Communication, and External Control Settings

Enable statistical calculation (p. 96)

Transmitting data (p. 99)

Printing (p. 101)

Computer communications (p. 123)

External Control (p. 107)

Instrument interface settings must be configured before printing, using communications or external control.

When Finished

Turning Power Off (p. 27)

Introduction

Thank you for purchasing the Hioki Model RM3542C (RM3542C-1, RM3542C-2, RM3542C-3, RM3542C-4, RM3542C-5) Resistance Meter.

To obtain maximum performance from the instrument, please read this manual first, and keep it handy for future reference.

Model RM3542C-2 and RM3542C-5 includes the GP-IB interface.

Information on download site

For details on the product application, the update file for the instrument, and the instruction manual, please check Hioki's website:

<https://cloud.gennect.net/dl>

Request for product user registration

We kindly request that you visit the following link to register your product to receive critical updates and information about the product:

<https://www.hioki.com/global/support/myhioki/registration/>

See the following manuals according to the applications.

Names of manuals	Description	Provided form
Instruction Manual	This manual provides detailed descriptions and specifications for the instrument. To read this manual, please download it from the main Hioki website.	PDF (for web download)
Startup Guide	This is composed of excerpts from the Instruction Manual. Please read this manual first when you receive the instrument. It also describes remedies for possible problems.	Print
Operating Precautions	This manual provides the information required to use the instrument safely.	Print

Target audience

This manual has been written for use by individuals who use the product or provide information about how to use the product.

In explaining how to use the product, it assumes electrical knowledge (equivalent of the knowledge possessed by a graduate of an electrical program at a technical high school).

Trademarks

Visual Basic and Windows are a trademark of the Microsoft group of companies.

Verifying Package Contents

Inspection

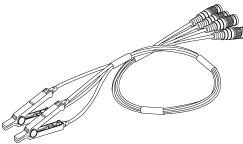
When you receive the instrument, inspect it carefully to ensure that no damage occurred during shipping. In particular, check the accessories, panel switches, and connectors. If damage is evident, or if it fails to operate according to the specifications, contact your authorized Hioki distributor or reseller.

Content confirmation

Confirm that these contents are provided.

This instrument 1

Accessories

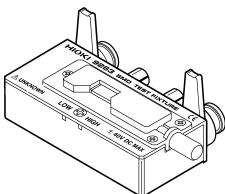

- Startup Guide 1
- Operating Precautions (0990A905) 1
- Power Cord (p. 24)
- EXT.I/O Connector (p. 122)

Options

The optional equipment listed below is available for the instrument. To purchase any optional equipment, please contact your authorized Hioki distributor or reseller. Please note that optional equipment offerings are subject to change without advance notice. For the latest information, check Hioki's website.


Measurement Probes and Fixtures (connect to measurement jacks)

Model 9140-10 4-terminal Probe


Alligator-clip-type measurement probes. These general-purpose dual-electrode clips fit a wide range of conductor thicknesses. Measurable terminal diameter: 0.3 mm to 5 mm. Maximum rated voltage to earth: 30 V rms AC, 42.4 V peak, 60 V DC. Maximum rated voltage: 30 V rms AC, 42.4 V peak, 60 V DC. Maximum rated current: 1 A peak

Model 9262 Test Fixture


This fixture is for measuring lead components. Measurable sample dimension: Lead diameter: ϕ 0.3 mm to ϕ 2 mm Lead pitch: 5 mm or more

Model 9263 SMD Test Fixture

This fixture is for measuring chip components. Measurable sample dimension: Sample width: 1 mm to 10 mm (less than 20 m Ω residual resistance after zero adjustment)

Model IM9100 SMD Test Fixture

This fixture is for measuring ultra-small SMD components. Measurable sample dimension: JIS(EIA): Approx. L mm \times W mm 0402 (01005): 0.4 mm \times 0.2 mm 0603 (0201): 0.6 mm \times 0.3 mm 1005 (0402): 1.0 mm \times 0.5 mm

Interface Cables

Model 9637 RS-232C Cable (9-pin to 9-pin/crossover cable/1.8 m)

Model 9151-02 GP-IB Connector Cable (2 m)

Precautions during shipping

During shipment of the instrument, handle it carefully so that it is not damaged due to a vibration or shock.

Safety Information

This instrument is designed to conform to IEC 61010 Safety Standards, and has been thoroughly tested for safety prior to shipment. However, using the instrument in a way not described in this manual may negate the provided safety features.

Before using the instrument, be certain to carefully read the following safety notes:

!WARNING

If persons unfamiliar with electricity measuring instrument are to use the instrument, another person familiar with such instruments must supervise operations.

!CAUTION

Mishandling during use could damage to the instrument. Be certain that you understand the instructions and precautions in the manual before use.

Marks on This Instrument

Indicates cautions and hazards. When the symbol is printed on the instrument, refer to a corresponding topic in the Instruction Manual.

Indicates AC (Alternating Current).

Alarm Symbols

In this document, the risk seriousness and the hazard levels are classified as follows.

!DANGER

Indicates an imminently hazardous situation that will result in death or serious injury to the operator.

!WARNING

Indicates a potentially hazardous situation that may result in death or serious injury to the operator.

!CAUTION

Indicates a potentially hazardous situation that may result in minor or moderate injury to the operator or damage to the instrument or malfunction.

NOTE

Indicates advisory items related to performance or correct operation of the instrument.

Symbols for Various Standards

Indicates that the product conforms to regulations set out by the EU Directive.

This symbol indicates laws and regulations regarding the disposal of electrical and electronic appliances in the Member States of EU (WEEE directive).

Indicates that the product complies with Korean regulations.
Declarer: TAISHIN CO., LTD.

Other Symbols

Indicates the prohibited action.

(p.)

Indicates the location of reference information.

*

Indicates that descriptive information is provided below.

[]

Square brackets indicate instrument display labels (such as setting item names).

SET

(Bold characters) Bold characters within the text indicate operating key labels.

Unless otherwise specified, Windows represents Windows 10 or Windows 11.

Click: Press and quickly release the left button of the mouse.

Double click: Quickly click the left button of the mouse twice.

Accuracy

We define measurement tolerances in terms of f.s. (full scale), rdg. (reading) and dgt. (digit) values, with the following meanings:

f.s. (maximum display value)

The maximum displayable value. This is usually the name of the currently selected range.

rdg. (reading or displayed value)

The value currently being measured and indicated on the measuring instrument.

dgt. (resolution)

The smallest displayable unit on a digital measuring instrument, i.e. a "1" as the least-significant digit.

Operating Precautions

Follow these precautions to ensure safe operation and to obtain the full benefits of the various functions.

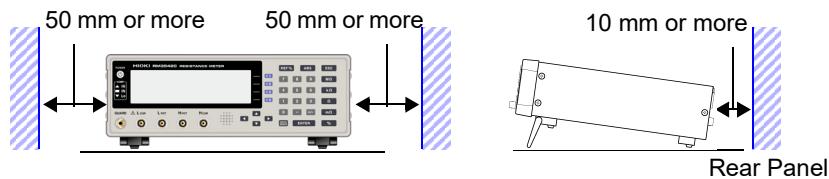
Preliminary Checks

Before using the instrument for the first time, verify that it operates normally to ensure that no damage occurred during storage or shipping. If you find any damage, contact your authorized Hioki distributor or reseller.

Instrument Installation

⚠ WARNING

Installing the instrument in inappropriate locations may cause a malfunction of instrument or may give rise to an accident. Avoid the following locations:


- Exposed to direct sunlight or high temperature
- Exposed to corrosive or combustible gases
- Exposed to a strong electromagnetic field or electrostatic charge
- Near induction heating systems (such as high-frequency induction heating systems and IH cooking equipment)
- Susceptible to vibration
- Exposed to water, oil, chemicals, or solvents
- Exposed to high humidity or condensation
- Exposed to high quantities of dust particles

Installing

- To prevent overheating, be sure to leave the specified clearances around the instrument.
- Install the instrument with the bottom facing down.

⚠ CAUTION

Do not place the instrument on an unstable table or an inclined place. Dropping or knocking down the instrument can cause injury or damage to the instrument.

The instrument can be used with the stand (p. 18) in the upright position. It can also be rack-mounted (p. A8).

Unplugging the power cord kills power to the instrument. Be sure to provide enough unobstructed space to unplug the power cord immediately in an emergency.

Handling the Instrument

⚠ CAUTION

To avoid damage to the instrument, protect it from physical shock when transporting and handling. Be especially careful to avoid physical shock from dropping.

The instrument is classified as a Class A device under the EN 61326 standard. Use of the instrument in a residential setting such as a neighborhood could interfere with reception of radio and television broadcasts. If this occurs, take appropriate steps to counteract the issue.

Handling the Fixture

NOTE

Before using a test fixture, read the instructions provided with it.

Before Turning Power On

⚠ WARNING

- Before turning the instrument on, make sure the supply voltage matches the voltage indicated on its power connector. Connection to an improper supply voltage may damage the instrument and present an electrical hazard.
- To avoid electrical accidents and to maintain the safety specifications of this instrument, connect the power cord provided only to an outlet.

⚠ CAUTION

Avoid using an uninterruptible power supply (UPS) or DC/AC inverter with rectangular wave or pseudo-sine-wave output to power the instrument. Doing so may damage the instrument.

Before Connecting EXT. I/O Connector

⚠ WARNING

To avoid electric shock or damage to the equipment, always observe the following precautions when connecting to the EXT. I/O connectors:

- Always turn off the power to the instrument and to any devices to be connected before making connections.
- During operation, a wire becoming dislocated and contacting another conductive object can be serious hazard. Use screws to secure the EXT. I/O connectors.

⚠ CAUTION

To avoid damage to the instrument, always observe the following precautions when connecting to the EXT. I/O connector.

- Do not apply voltage or current to the EXT. I/O terminals that exceeds their ratings (p. 116).
- Ensure that devices and systems to be connected to the EXT. I/O terminals are properly isolated.
- When driving relays, be sure to install diodes to absorb counter-electromotive force.
- The ISO_5 V pin of the EXT. I/O connector is a 5 V power output. Do not apply external power to this pin. Be careful not to short-circuit ISO_5 V to ISO_COM.
- The ISO_12 V pin of the EXT. I/O connector is a 12 V power output. Do not apply external power to this pin. Be careful not to short-circuit ISO_12 V to ISO_COM.

See "Connector Type and Signal Pinouts" (p. 108).

Before Connecting to the RS-232C Connector or SET MONITOR Connector

⚠ CAUTION

- Use a common ground for both the instrument and connected device. Using different ground circuits will result in a potential difference between the instrument's ground and the connected device. If the communications cable is connected while such a potential difference exists, it may result in equipment malfunction or failure.
- Before connecting or disconnecting any the communications cable, always turn off the instrument and the connected device. Failure to do so could result in equipment malfunction or damage.
- After connecting the communications cable, tighten the screws on the connector securely. Failure to secure the connector could result in equipment malfunction or damage.

Before Measuring

⚠ DANGER

To avoid electrical hazards and damage to the instrument, do not apply voltage exceeding the rated maximum to the EXT. I/O connectors.

⚠ CAUTION

- Do not apply any voltage to the measurement jacks. Doing so may damage the unit.
- Never attempt to measure at a point where voltage is present. In particular, do not measure a transformer or motor immediately after a temperature increase test or withstand-voltage test, as the instrument could be damaged by induced voltage or residual charge.
- Battery internal resistance cannot be measured with this instrument. It will sustain damage. To measure the battery internal resistance, we recommend the Hioki 3561, BT3554, BT3561A, BT3562, BT3563 and BT3564 Battery HiTesters.

NOTE

- To obtain the guaranteed measurement accuracy, allow at least 30 minutes warm-up. The warm-up time required to satisfy 90-day accuracy requirements (RM3542C-3 only) is 60 minutes.
- The instrument internally retains all settings (but not measurement values), such as measurement range and comparator settings. However, measurement settings made through the RS-232C or GP-IB interface are not memorized.
- In the 100 Ω or higher ranges (LOW POWER: OFF setting), a measurement error may occur due to the influence of thermoelectromotive force.
- The DC resistance of a power transformer cannot be measured. When measuring objects with a large L, such as choke coils and other inductors, measurement values may be unstable. In such cases, contact your authorized Hioki distributor or reseller.
- Carefully insulate all H_{CUR}, H_{POT}, L_{POT} and L_{CUR} wiring. Proper 4-terminal measurements cannot be performed and an error will occur if the core and shield wires touch.

Overview

Chapter 1

1.1 Product Overview and Features

This instrument employs the 4-terminal method to quickly and accurately measure the DC resistance of components, such as resistors and ferrite beads.

It includes advanced contact-check, comparator, and data output functions. The intuitive user interface and high noise immunity are ideal for use with taping machines and separators.

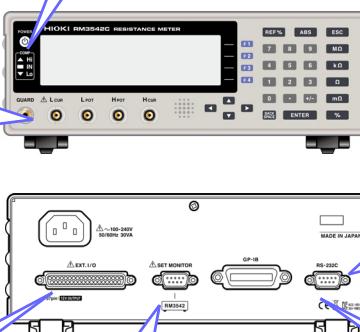
Resistance Measurement

The factory defaults (initial settings) are optimized for chip-component resistance measurements. It can also measure devices that are otherwise difficult to measure with a high current, such as ferrite bead and small multilayer inductors (low-power resistance measurement) (p.30). It is also suitable for measuring imperial 008004 sized components with small rated voltage (Applied Voltage Limit Function) (p.69).

Optional Hioki probes and fixtures are available to connect to the measurement jacks (BNC jacks (p.6)). Alternatively, commercially available cables, such as the 1.5D-2 V coax, can be used (p.26)

Judge the Measurement Values

Measurement values are compared with a pre-specified reference value or range, and the result is outputted externally and indicated by the COMP indicators (comparator function) (p.38)

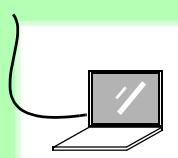


Save and Output the Measurement Values

Measurement values can be stored in the internal memory (p.91). Statistical calculations can be performed on the stored data, which can be transferred to a computer in batch form (however, stored data cannot be confirmed internally).

Connect a PLC or I/O Board

By connecting to the EXT. I/O connector, it is possible to control the instrument from a PLC. In addition to the comparator results, various measurement anomaly signals can be outputted. (p.107)


Send the measurement value and calculation results to the printer.

Use a commercially available printer with a serial interface to print the measurement values and calculation results. (p.101)

When using two instruments, a difference in settings disables measurement and causes a warning notification (Setting Monitor Function) (p.64).

Interface Communications

Connect the instrument to a controller via the RS-232C or GP-IB interface to control this instrument or acquire the measurement data (p.123)

Features

Ultra Fast and Accurate Measurements Increase Productivity

The factory default settings are optimized for chip-component resistance measurements. Enhanced contact-to-measurement and contact check-to-determination, within 1 ms.

When using the low-power resistance measurement and the 100 mΩ to 10 Ω ranges, the offset-voltage compensation (OVC) function minimizes the effects of thermal emf (p.70).

Because measurement results are judged as pass/fail with a 10 ppm resolution, it is ideal for high-speed Class B resistor testing.

High-Speed Data Output and Ample Memory

The Data Output function transfers measured data at 5 ms/sample, even via RS-232C.

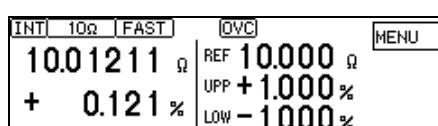
Up to 30,000 measurements can be stored, and all data can be exported at the end of measuring each reel.

This function is ideal for system setup, debugging and process management.

Multiple Interfaces

EXT. I/O is a noise proofed structure isolated from the measurement and control circuits (p.107).

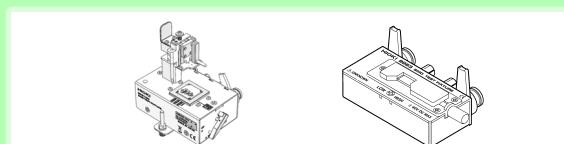
All data can be acquired in real time using the built-in 38.4-kbps high-speed RS-232C interface.


Connect the commercially available printer with a serial interface to print the measurement values and statistical calculation results (p.101).

The GP-IB interface can also be used for Model RM3542C-2 and RM3542C-5 (specified when shipping (p.123)).

Clearly Visible Display and Intuitive Operation

The high-contrast LCD provides clear visibility, helping to avoid setting mistakes. The optimum range is selected automatically when comparator thresholds are entered.

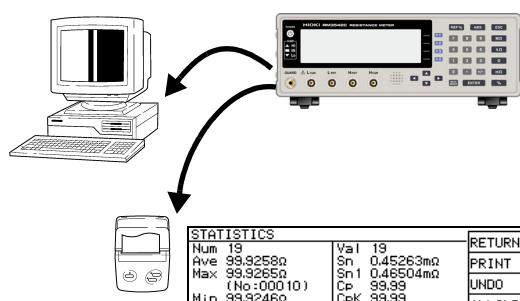


Fixtures for Component Measurements (p.6)

The BNC-type measurement jacks exhibit good noise immunity.

Ready availability and easy assembly ensure a smooth system setup.

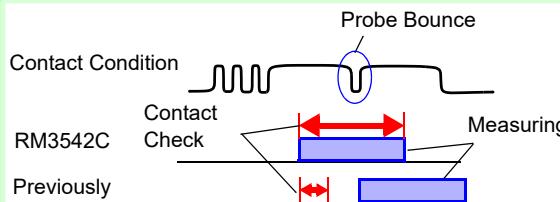
Various test fixtures are available for Hioki LCR HiTesters.



The Auto Memory Function Is Convenient for Sampling Tests(p.93)

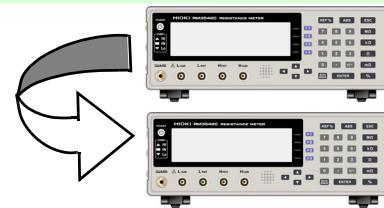
The auto memory function is convenient for sampling tests after screen-printing.

When the measurement values become stable, the measurement value is automatically acquired and statistical calculations are performed at the same time. The beeper gives a notification when the specified number of values are stored.


Selecting [PRINT] (screen display) prints the measurement values and statistical calculation results(p.105).

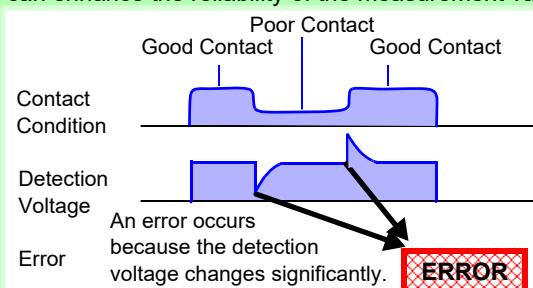
Features

Reliable Contact Checks (p.55)

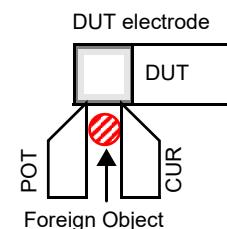

Contact checking (that was previously performed before and after measuring) is now performed during measurement, so probe bounce and contact resistance fluctuations can be detected. Contact checking time can be shortened, improving tact times.

Minimize Human Error and Risk

- Settings Monitor Function (p.64)

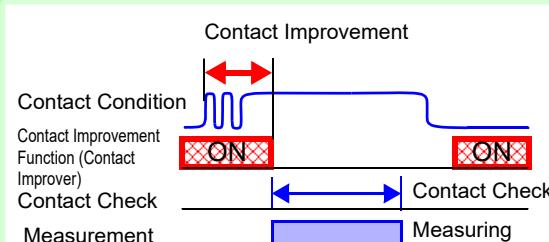

If the settings are found to be different after comparing the setting conditions of two instruments, an alarm is sounded to prohibit the TRIG input. Helps to prevent human errors by avoiding setting mistakes.

Reject Faulty Data - Voltage Level Monitor Function (p.60)


When the contact resistance of the H_{CUR} and L_{CUR} leads fluctuates, the measurement current changes momentarily. Such momentary changes are not detectable by typical contact checking.

The Voltage Level Monitor Function indicates a contact error if the detection voltage changes significantly. It can enhance the reliability of the measurement value.

Reliable Four-Terminal Measurement - Probe Short-Circuit Detection Function (p.62)

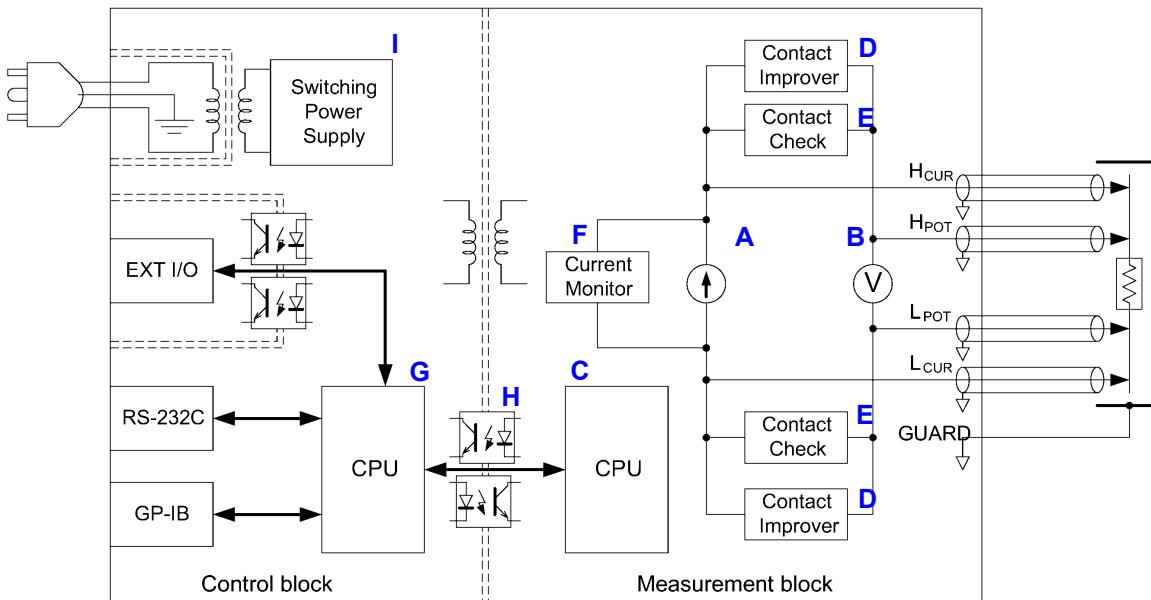

If a conductive foreign object is present between the POT and CUR probe tips, the reliable four-terminal measurements cannot be maintained. When not measuring, resistance between the POT and CUR probe tips is measured and short-circuit probe anomalies are detected.

Contact Improvement Function (Contact Improver) (p.57)

The Contact improvement function improves bad contacts between probes and test samples. Contacts errors are reduced by penetrating oxidation and impurities between probes and samples.

Reducing contact errors can increase productivity and quality. The intensity of the Contact improvement function can be adjusted according to probe type.

Measurement Circuit Strongly Immune to Contact Resistance Fluctuations


The effects of contact resistance fluctuations are reduced even when scattering occurs near the end of probe life. Such effects are minimized by the fast response of the measurement circuit.

Strong Electrical Noise Immunity

The specified measurement accuracy is achieved even with a ± 1.5 kV mixed pulse noise. The floating measurement section design is highly impervious to electrical noise, minimizing the effect on measurement values even when turning large-induction motors on and off.

The free-range power supply input (90 to 264 V) is essentially unaffected by voltage fluctuations, so stable measurements are possible even under poor power conditions.

Block Diagram

- A constant current (determined by the measurement range) is applied between the H_{CUR} and L_{CUR} terminals while voltage is measured between the H_{POT} and L_{POT} terminals. The resistance value is obtained by dividing the measured voltage (B) by the constant current flow (A). (A, B)
- The effects of a large offset voltage, such as from thermal emf, are reduced by reversing the current and measuring twice in positive and negative directions (A). (A)
- The constant current source (A) and voltmeter (B) circuit designs are largely unaffected by contact resistance. (A, B)
- Faulty measurement values caused by unstable or chattering contact conditions can be eliminated by monitoring (C) the detection voltage (B) waveform (voltage level monitor function). (B, C)
- The voltmeter is provided with sufficient time for integration (the default setting is 0.3 ms) to achieve stable measurements. (The integration time can be reduced to 0.1 ms to support higher speeds.) (B)
- Before measuring, the Contact Improver circuit (D) optimizes the contact when the probes touch the DUT. (D)
- Also, performing contact checking (E) before measuring can detect short circuits between the CUR and POT terminals caused by a clogged probe tip (probe short-circuit detection function). (E)
- When measurement starts, the contact check circuit (E) and constant current monitor (F) are activated to monitor for faulty conditions while measuring. (E, F)
- The dual CPU (C and G) design provides ultra-high-speed measurements and a fast system response. (C, G)
- Protection from electrical noise is provided by the isolation between the Measurement and Control blocks (H). (H)
- The 90 V to 264 V wide range switching power supply (I) can provide stable measurements even in poor power quality environments. (I)

1.2 Names and Functions of the Parts

Front Panel

Turning the Power On and Off

POWER Button

Turns the instrument on and off. (p.27)

- Off: power is off (When power is not supplied)
- Red light: power is off (when power is supplied)
- Green light: power on

Viewing the Measurement Values and Settings

Display Screen

Monochrome graphical LCD
There are three screen types: Measurement, Basic Settings and Detailed Settings.
Screen Configurations (p.19)

Setting

Judging the Measurement Values (p.38)(Comparator Function)

Set a reference value and range for judging the measurements, which can be confirmed by the **COMP** indicators.

REF%

Select this to judge the measurement values relative to a reference value and tolerance (%).The REF% setting display appears.

ABS

Press this button to judge the measurement values relative to the setting range (absolute value).The ABS setting display appears.

Viewing the Comparator Results

COMP indicator

Displays Comparator Results (p. 36).

Hi The measurement value is above the upper limit.

IN Pass (meets criteria)

Lo The measurement value is below the lower limit.

Connecting Probes

Measurement jacks

Connect measurement probes and fixtures (p. 23).

- HCUR jack: Current source terminal
- HPOT jack: High voltage detection terminal
- LPOT jack: Low voltage detection terminal
- LCUR jack: Current detection terminal
- GUARD jack: Shield terminal (for the measurement of GND)

See "Before Measuring" (p.11)

Entering numerical values

0 - 9

Enter a numerical value.
(these are called the numeric keys)

+/-

Switches the sign of a numerical value.

mΩ - MΩ

Selects the unit of measure.

%

Sets the tolerance values.

BACK SPACE

Deletes the value in the selected field.

ENTER

Accepts the displayed comparator threshold values.

ESC

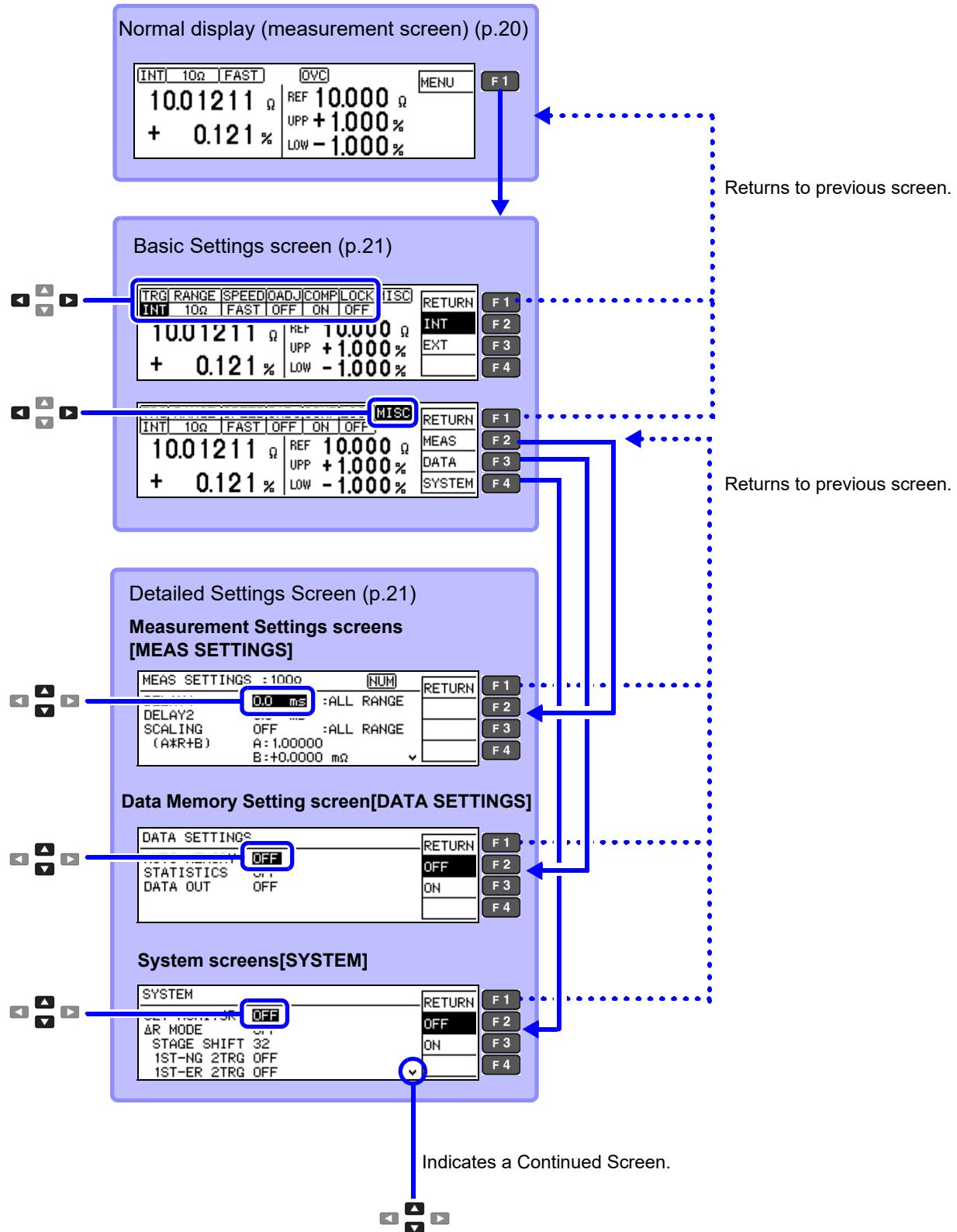
Aborts comparator setting and returns to the previous display.

Selecting the setting contents

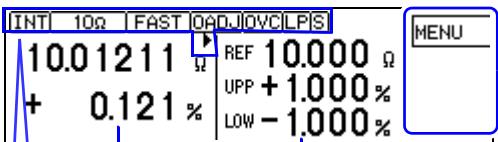
F1 - F4

(we call these "F keys")
Selects the corresponding item on the right side of the display.

Cursor keys
Move among the displayed setting items.
The cursor location is indicated by reverse characters.



1.3 Screen Organization


The instrument has three general display screen types: Measurement, Basic Settings and Detailed Settings.

See "11.3 Error Displays and Solutions" "Error Displays and Solutions" (p. 223) for error displays.

The screen examples in this manual are reversed (black on white) for the best visibility on the printed page. However, the instrument screens can actually be displayed only with white characters on a black background.

Normal display (measurement screen)

Measurement Criteria Setting Values (p.38)
value
Displayed contents depend on the selected comparator mode.
(Ex.: REF% mode)

Measurement Conditions

Shows current setting contents. Displayed contents depend on the current settings.

INT/ EXT	Trigger source type (p.33)
Ω	Measurement ranges (p.34)
FAST/ MED/ SLOW	Measurement Speed (p.31)
0ADJ/ OFF (no display)	Appears only when the zero-adjustment is enabled (p.36).
OVC/ OFF (no display)	(OVC: offset voltage compensation) Appears only when the offset voltage compensation is enabled (p.70).
LP/ OFF (no display)	Appears only when the low-power resistance measurement function is enabled (p.30).
S/ OFF (no display)	Appears when scaling function is enabled (p.50)
VL/ OFF (no display)	Appears only when the applied voltage limit function is enabled (p.69)
NUM	Appears only when numeric input is enabled.
RMT	Remote status(p.130)
M.LOCK	Disables all operations except the comparator settings (p.79).
F.LOCK	Disables all operations including the comparator settings (p.79)

This screen normally appears while measuring. View currently measurement values and measurement conditions.

Some parts of the display depend on the comparator mode and other settings.

To display the Basic Settings screen

Settings Menu (corresponding to the F keys)
Displayed contents depend on the current function settings.
Parentheses () indicate the corresponding F key.

MENU (F1)	Displays the Basic Settings screen.
PRINT (F2)	Printing (p.103) Appears only when the interface is set for the printer.
STAT (F3)	Statistical calculation results (p.96) Appears only when statistical calculation is enabled
NUMBER (F4)	Sets the Auto-Memory number (p.93). Appears only when the auto-memory function is enabled Displays the memory number, the number of passed and failed products, in the lower left of the screen.
UNDO (F3)	Deletes the last stored measurement and calculation result (executes only once) (p.98) Appears only when the calculation result screen is displayed.
ALLCLR (F4)	Clears all memory and calculations (p.98). Appears only when calculation results are displayed.
LOCAL (F1)	Cancels the remote status (p.130).
UNLOCK (F1)	Cancels the key-lock status (Hold for one second) (p.80).

Basic Settings screen

Return to previous screen

TRG	RANGE	SPEED	0ADJ	COMP	LOCK	MISC
INT	10Ω	FAST	OFF	ON	OFF	
10.01211 Ω			REF	10.000 Ω		
+ 0.121 %			UPP	+ 1.000 %		
- 0.121 %			LOW	- 1.000 %		

RETURN
INT
EXT
F 1
F 2
F 3
F 4

Measurement condition settings

Move with cursor keys.

Measurement condition setting conditions

TRG	RANGE	SPEED	0ADJ	COMP	LOC	MISC
INT	10Ω	FAST	OFF	ON	OFF	
10.01211 Ω			REF	10.000 Ω		
+ 0.121 %			UPP	+ 1.000 %		
- 0.121 %			LOW	- 1.000 %		

RETURN
MEAS
DATA
SYSTEM
F 2
F 3
F 4

Make basic measurement condition settings on this screen. Measurement speed and range can be changed while viewing the measurement values (when the Trigger source is set to the internal trigger [INT]).

TRG Changing the trigger source (start control method) (p.33). When selecting [TRG: EXT], [MANU] appears by pressing the F4 key (Measures manually once).

RANGE Change the range (p.34).

SPEED Change the measurement speed (p.31).

0ADJ Zero-adjustment function ON/OFF (p.36)

COMP Comparator function ON/OFF (p.38)

LOCK Key-lock function ON/OFF (p.79)

MISC To display the Detailed Settings screen.

F 2 To the Measurement Settings screen [MEAS SETTINGS]

F 3 To the Data Memory Setting screen [DATA SETTINGS]

F 4 To the System screen [SYSTEM]

Detailed Settings Screen

Measurement Settings screens [MEAS SETTINGS]

MEAS SETTINGS :100MΩ		RETURN
DELAY1	0.0 ms	:ALL RANGE
DELAY2	0.0 ms	:ALL RANGE
SCALING	OFF	:ALL RANGE
(A*R+B)		A: 1.000000
		B: +0.0000 mΩ

MEAS SETTINGS :100MΩ		RETURN
INT(SLOW)	4PLC	
CONT CHECK	ON	200Ω
CONT IMP	ON	35mA
VOLT MONITOR	OFF	
CURRENT MODE	PULSE	

Shows detailed settings for measurements.

Use when adjusting the measurement speed, stability and measurement fault detection functions.

DELAY1 Adjust the delay between the probing and trigger input (p.48).

DELAY2 Adjust the target electrical response (p.48).

SCALING (A*R+B) Compensate the measured value using scaling function (p.50) (RM3542C-1, RM3542C-2 or RM3542C-3 only)

INT(FAST/ MED/ SLOW) Make fine adjustment to the integration time (p.52).

AVERAGE Average function settings (p.54) (RM3542C-3 only)

CONT CHECK Contact check threshold setting (p.55)

CONT IMP Contact improvement function setting (p.57)

VOLT MONITOR Voltage level monitor function setting (p.60)

CURRENT MODE Current mode setting (p.61)

These are settings for memory and statistical calculation functions.

AUTO MEMORY Auto-memory function ON/OFF (p.93)

STATISTICS Statistical calculation ON/OFF (p.96)

DATA OUT Auto-export the measurement values (communication) ON/OFF (p.99)

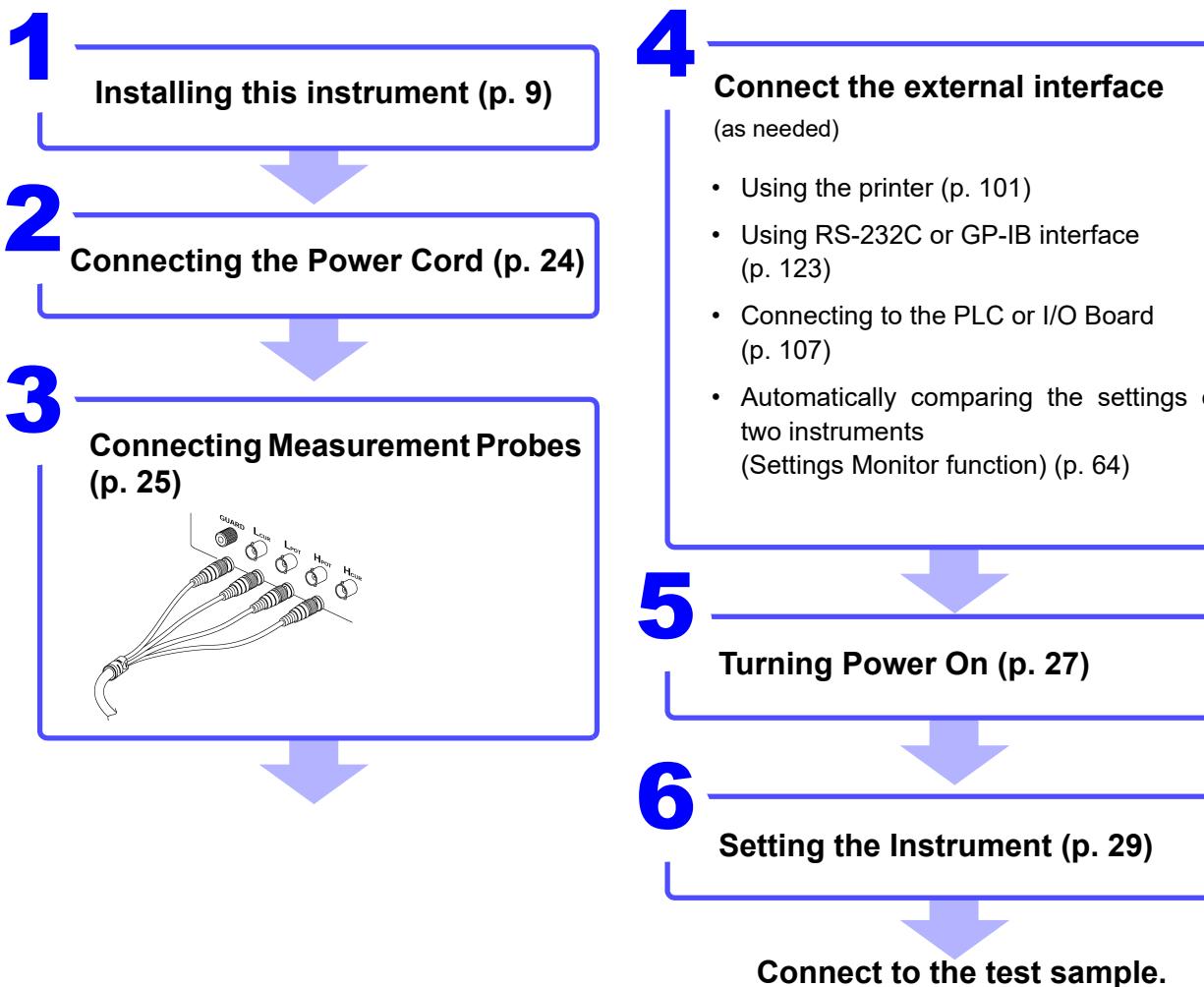
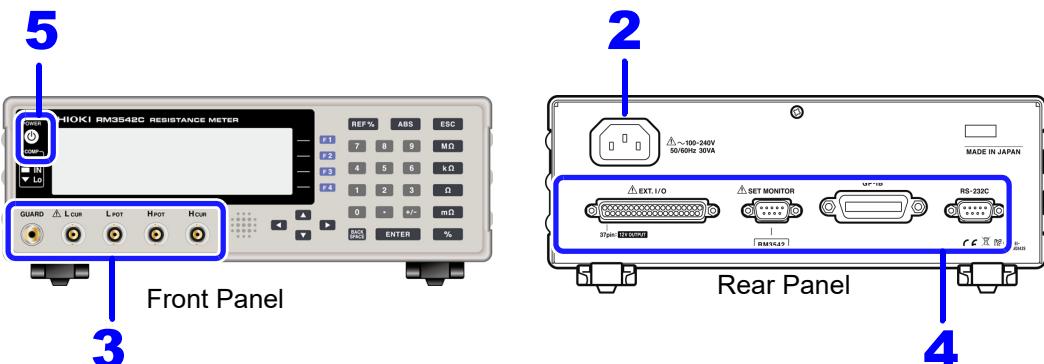
Data Memory Setting screen (Save, analysis, output) [DATA SETTINGS]

DATA SETTINGS		RETURN
AUTO MEMORY	OFF	
STATISTICS	OFF	
DATA OUT	OFF	

System screens

[SYSTEM]

SYSTEM		RETURN
SET MONITOR	OFF	OFF
ΔR MODE	OFF	ON
STAGE SHIFT	32	
1ST-NG 2TRG	OFF	
1ST-ER 2TRG	OFF	



Set instrument system-related settings on this screen.

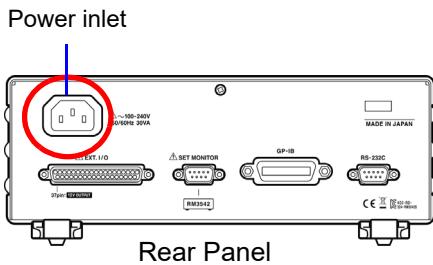
SET MONITOR	Two units measurement condition comparison ON/OFF(p.64)
ΔR MODE	ΔR function settings (p.73) (RM3542C-3 only)
STAGE	Stage mismatch prevention function setting (p.120)
PROBE CHECK	Probe short-circuit detection function ON/OFF (p.62)
RETRY	Retry function setting (p.67)
VOLT LIMIT	Sets voltage limit function to ON/OFF (p.69) (RM3542C-1, RM3542C-2 or RM3542C-3 only)
JUMPER MODE	Jumper resistance measurement support function settings (p.71) (RM3542C-1, RM3542C-2 or RM3542C-3 only)
TRIG EDGE	(EXT. I/O) Set the trigger rising/falling edge (p.119)
EOM	(EXT. I/O) EOM (end-of-measurement signal) output setting (p.118)
INTERFACE	Communications interface settings (p.127)
%OUTPUT	Configures the percentage output function (p.100) (RM3542C-1, RM3542C-2 or RM3542C-3 only)
PRINT MODE	Set printing method (p.103)
LOW POWER	Low-power resistance component measurement ON/OFF (p.30)
JUDGE BEEP	Comparator beeper settings (p.82)
KEY BEEP	Key beeper ON/OFF (p.81)
CLOCK (Y-M-D)	Internal clock settings (p.85)
LINE FREQ	Power source frequency settings (p.83)
CONTRAST	Adjust screen contrast (p.86)
BACKLIGHT	Adjust screen backlight (p.87)
PRESET	Preset function settings (p.84) (RM3542C-1, RM3542C-2 or RM3542C-3 only)
RESET	Initializing (p.88)
ADJUST (Not used)	Instrument Adjustment (p. A13)

Measurement Preparations

Chapter 2

Be sure to read the "Operating Precautions" (p.9) before installing and connecting this instrument. See "Appendix 4 Rack Mounting" (p. A8) for rack mounting.

After measurements are completed, turn the power off. (p. 27)


2.1 Connecting the Power Cord

⚠ WARNING

- Before turning the instrument on, make sure the supply voltage matches the voltage indicated on its power connector. Connection to an improper supply voltage may damage the instrument and present an electrical hazard.
- To avoid electrical accidents and to maintain the safety specifications of this instrument, connect the power cord only to a 3-contact (two-conductor + ground) outlet.
- Before using the instrument, make sure that the insulation on the power cord is undamaged and that no bare conductors are exposed. Any damage can cause electric shock, contact your dealer or Hioki representative.

⚠ CAUTION

To avoid damaging the power cord, grasp the plug, not the cord, when unplugging it from the power outlet.

1 Confirm that the supply voltage matches the instrument, and connect the power cord to the power inlet on the instrument.

2 Connect the plug of the power cord to the outlet.

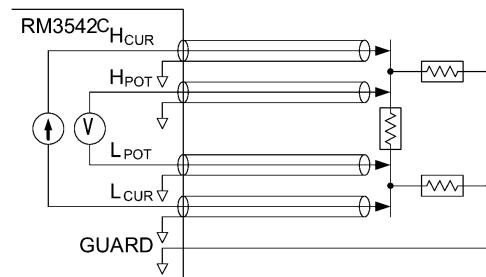
The **POWER** button on the front panel lights up in red.

In event of a power outage, operation resumes with the same settings when power is restored (breaker reset, etc.).

2.2 Connecting Measurement Probes and Test Fixtures

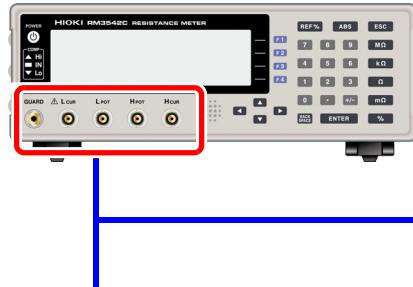
Connect your measurement probes, optional Hioki probes, or test fixtures to the measurement jacks.

Refer to "Options" (p.6) for details of the Hioki option.

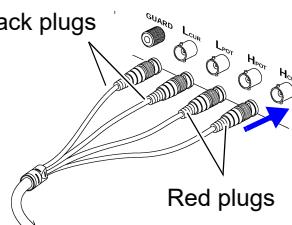

See the instructions provided with the fixture for operating details.

CAUTION

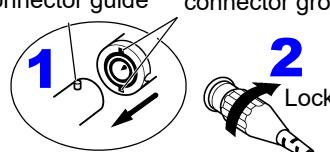
- Do not apply any voltage to the measurement jacks. Doing so may damage the unit.
- When disconnecting the BNC connector, be sure to release the lock before pulling off the connector. Forcibly pulling the connector without releasing the lock, or pulling on the cable, can damage the connector.


NOTE

- We recommend using optional Hioki fixtures.
- Use the GUARD jack only for the High-Resistance Measurements shield, and avoid more than a 10 mA current flow. This jack is not for guarding the network resistance measurements.

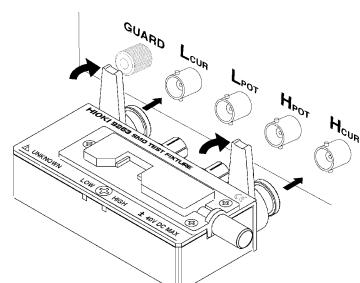

Example of defeated guard measurement

Connection Methods


Connecting measurement probes

Black plugs

Connect the red plugs to the H_{CUR} and H_{POT} jacks, and the black plugs to the L_{CUR} and L_{POT} jacks.


Measurement jack Cable BNC connector guide connector groove

Align the slots in the BNC plug with the guide pins on the jack on the instrument, then push and twist the plug clockwise until it locks.

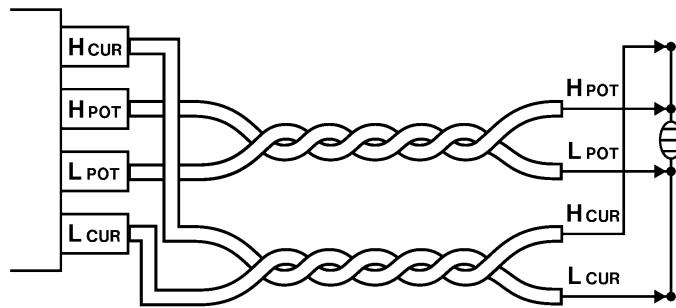
Disconnecting BNC connectors
Push the BNC plug, twist it counter-clock-wise, and pull it out.

Connecting a fixture

Connect it directly to the measurement jacks with the label side facing up, and fix it with the levers on the left and right sides.

Making and extending your own probes (p. 26)

Making Your Own Measurement Probes


Recommended measurement probe specifications

Conductor resistance	500 mΩ/m or less
Capacitance	150 pF/m or less
Cable dielectric material	Polyethylene (PE), TEFLO* (TFE), Polyethylene foam (PEF) Insulation resistance 10 GΩ or more
Connector insulating material	TEFLON* (TFE), Polybutylene terephthalate (PBT) Insulation resistance 10 GΩ or more
Length	2 m or less

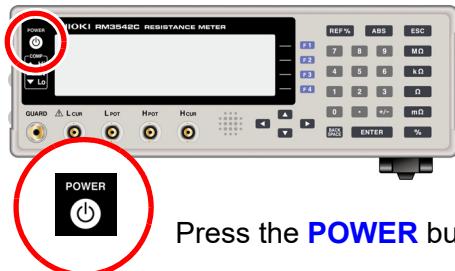
Example: JIS standard 3C-2V, 1.5D-2V MIL standard RG-58A/U

* Trademark of another company

Wiring Diagram

Before Wiring

- Twist the H_{POT} and L_{POT} wires, and the H_{CUR} and L_{CUR} wires together.
If not twisted together, measurement values may be unstable and errors may occur when measuring with low-power resistance, or low resistance values.
- See the block diagram (p. 16) for the internal circuit details.
- Probes and measuring objects should be shielded at GUARD jack potential.

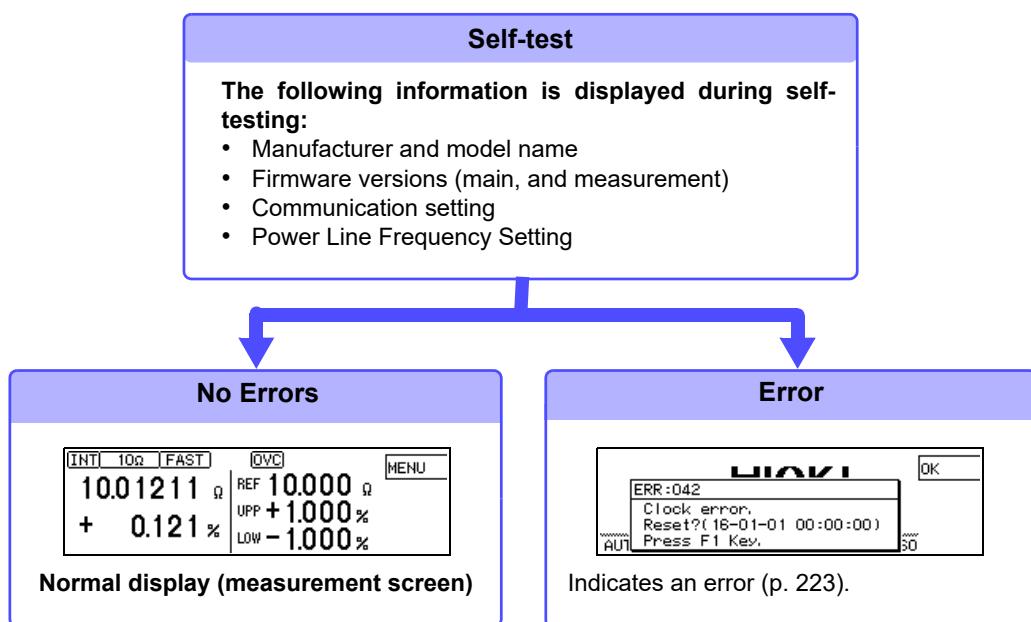

When Extending the Measurement Probes

Observe the following when extending the measurement probes.

- Measurement probe length: keep it within 2 m (with a conductor resistance of 500 mΩ/m or less). Long cables are more susceptible to noise, and the measurement values may be unstable.
- Extensions should maintain the four-terminal structure. If the wiring is converted to a two-terminal structure in wiring, the correct measurement may not be possible due to the effects of the wiring and contact resistance.
- Cables and measuring objects should be shielded.
- After extending the measurement probes, verify that the operation and accuracy conform to the "Measurement Specifications" (p.217).
- When cutting off the ends of the optional measurement probes, make sure that the H_{CUR}, H_{POT}, L_{POT}, and L_{CUR} shield wires and core wires do not come into contact. Such contact will make accurate measurement impossible.

2.3 Turning the Power On and Off

Turning Power On



Press the **POWER** button (it lights up in green).

After Power-On

A self-test (instrument diagnostic routine) is performed.

During the self-test, the following information is displayed while the hardware is verified.

When the power is turned on, the same setting as when the power was last turned off appears (backup function).

When powered up for the first time, the default settings appear.

See: "Default Settings" (p.89)

Before Starting Measurement

To obtain precise measurements, provide about 30 minutes for warm-up after turning the power on. The warm-up time required to satisfy 90-day accuracy requirements (RM3542C-3 only) is 60 minutes.

Measurement settings are recalled from when the power was last turned off (settings backup).

However, measurement settings made through the RS-232C or GP-IB interfaces are not retained, although they can be stored using the :SYSTem:BACKup command (p. 166).

Turning Power Off

Press the **POWER** button (it lights up in red, power OFF).

Disconnect the power cord from the power inlet to extinguish the **POWER** button light.

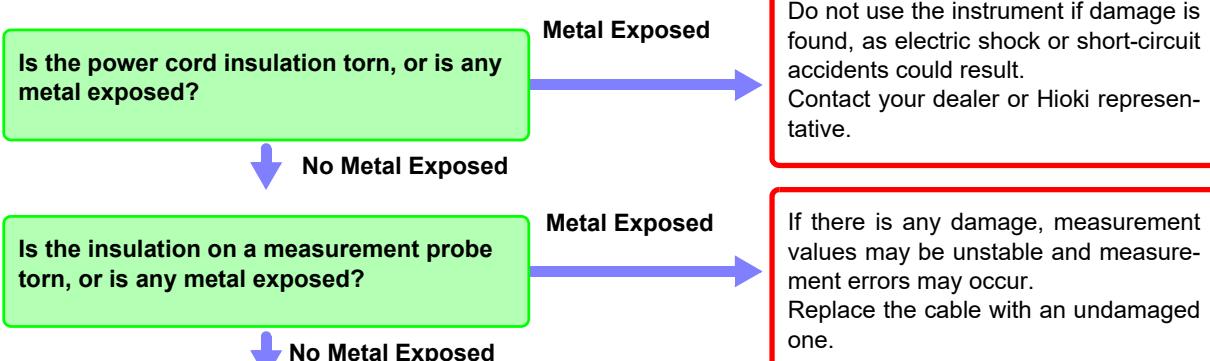
When the power is turned on again, operation resumes with the same settings as when last turned off.

NOTE

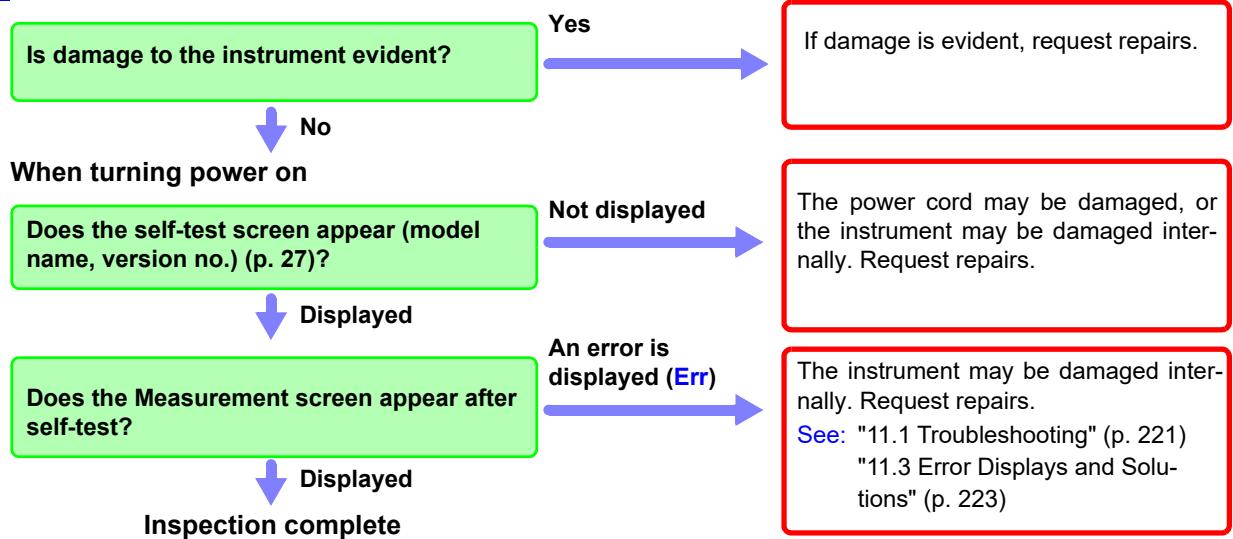
If a power outage (e.g., breaker trip) occurs when the instrument is turned on, it will automatically turn on again when the power is restored without pressing the **POWER** button.

Measurement Settings (Basic Measurements)

Chapter 3


3

Refer to "Measurement Flow" (p. 3) for an outline of the measurement process from preparation to end-of-measurement.


3.1 Pre-Operation Inspection

Before using the instrument for the first time, verify that it operates normally to ensure that no damage occurred during storage or shipping. If you find any damage, contact your dealer or Hioki representative.

1 Peripheral Device Inspection

2 Instrument Inspection

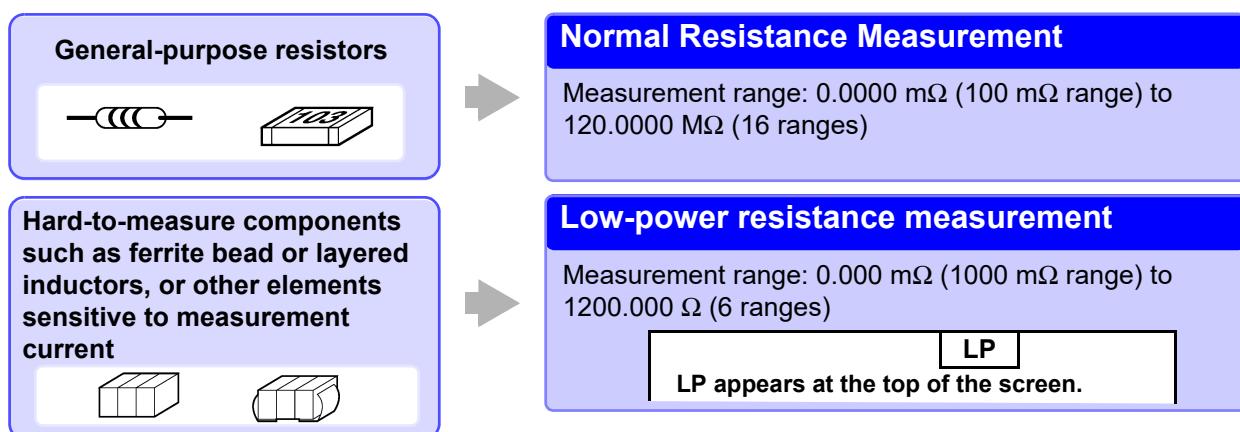
Please read the "Operating Precautions" (p. 9) before use.

3.2 Measuring Object Types

The instrument provides two measurement methods: resistance measurement, and low-power resistance measurement. Select the appropriate measurement method for the type of component to be measured. For general-purpose resistor measurements, use the factory defaults. The power applied to the measuring object = Resistance Value \times (Measurement Current)².

See: "(6) The Sample Becomes Warm" (p. A6)

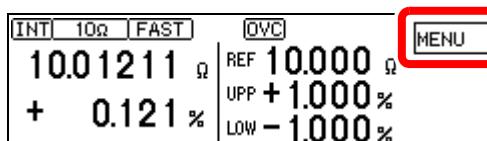
(Example) If the resistance to be measured is 100 Ω


(Measurement Current)

$$10 \text{ mA} \quad 100 \times 0.01^2 = 10 \text{ mW}$$

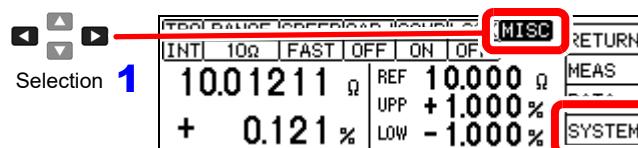
$$1 \text{ mA} \quad 100 \times 0.001^2 = 100 \mu\text{W}$$

(Measurement Method)


Normal Resistance Measurement, 100 Ω Range
Low-Power Resistance Measurement, 100 Ω Range

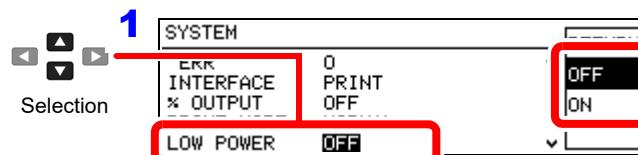
NOTE

Ranges 1000 Ω range or higher (LOW POWER: OFF) cannot be used for inductor measurements.


1 Open the Basic Settings screen.

F 1

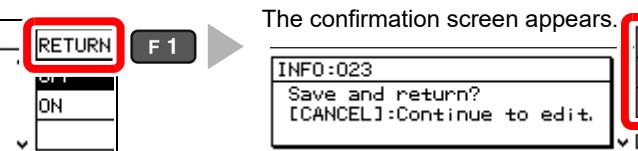
The Basic Settings screen appears.


2 Open the System screen.

F 4

The System screen appears.
[SYSTEM]

3 Select the low-power mode, as needed.



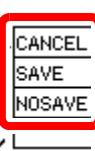
F 2

Normal Resistance Measurement (default)
Low-power resistance measurement

F 3

4 Return to the Measurement screen.

F 1

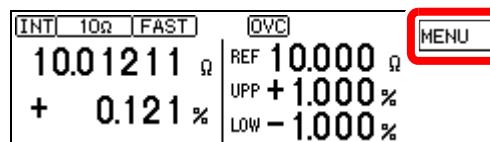

Returns to the setting screen.

F 2

Saves setting and return to previous screen.

F 3

Discards setting and return to previous screen.

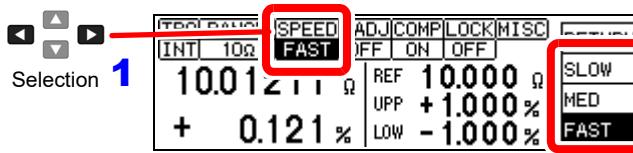


3.3 Setting the Measurement Speed

The measurement speed can be set to FAST, MED (MEDIUM), or SLOW. A slower measurement speed provides greater measurement precision.

A faster measurement speed results in greater susceptibility to environmental noise. Ensure that measurement probes and the sample are sufficiently shielded.

1 Open the Basic Settings screen.



F 1

The Basic Settings screen appears.

3

2 Select the measurement speed.

2

Refers to table below

F 2

F 3

F 4

(default)

Press the up/down cursor keys to change the setting.

3 Return to the Measurement screen.

3.3 Setting the Measurement Speed

Relationship Between Measurement Range and Speed (Measurement time)

(factory defaults)

Measurement range	LOW POWER: OFF			LOW POWER: ON		
	FAST	MED	SLOW	FAST	MED	SLOW
10 mΩ *1	3.8 ms	13.0 ms	43 ms 36 ms	—	—	—
100 mΩ	3.8 ms	13.0 ms	43 ms 36 ms	—	—	—
1000 mΩ	2.0 ms	6.4 ms	41 ms 35 ms	2.3 ms	12 ms	42 ms 35 ms
3 Ω *2	1.6 ms	6.0 ms	41 ms 34 ms	2.3 ms	12 ms	42 ms 35 ms
10 Ω	1.6 ms	6.0 ms	41 ms 34 ms	2.3 ms	12 ms	42 ms 35 ms
100 Ω	0.9 ms	3.6 ms	21 ms 17 ms	1.7 ms	6.1 ms	41 ms 34 ms
300 Ω *2	0.9 ms	3.6 ms	21 ms 17 ms	3.2 ms	7.6 ms	43 ms 36 ms
1000 Ω	0.9 ms	3.6 ms	21 ms 17 ms	7.2 ms	12 ms	47 ms 40 ms
10 kΩ	1.0 ms	3.6 ms	21 ms 17 ms	—	—	—
30 kΩ *2	0.9 ms	3.6 ms	21 ms 17 ms	—	—	—
100 kΩ	1.3 ms	3.8 ms	21 ms 18 ms	—	—	—
300 kΩ *2	1.3 ms	3.8 ms	21 ms 18 ms	—	—	—
1000 kΩ	2.5 ms	6.0 ms	21 ms 18 ms	—	—	—
3 MΩ *2	2.5 ms	6.0 ms	21 ms 18 ms	—	—	—
10 MΩ	5.3 ms	23 ms 20 ms	23 ms 20 ms	—	—	—
30 MΩ	5.8 ms	23 ms 20 ms	23 ms 20 ms	—	—	—
100 MΩ	26 ms 22 ms	46 ms 39 ms	86 ms 72 ms	—	—	—

Integration time can be optionally set for each range (p. 52).

Upper value: 50 Hz power line frequency

Lower value: 60 Hz power line frequency

Tolerance $\pm 10\% \pm 0.2$ ms

(No retry)

*1. RM3542C-3

*2. RM3542C-1, RM3542C-2 or RM3542C-3

3.4 Setting Measurement Start Conditions (Trigger Source)

Measurements can be started in two ways.

To measure automatically

Measure with internal [INT] triggering

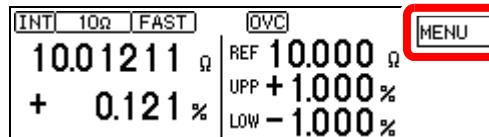
Trigger signals are automatically generated internally for continuous measurement.

To measure at specific times

Measure with external [EXT] triggering

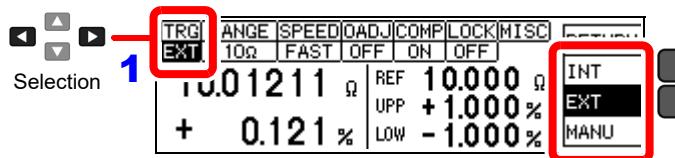
Measurements are triggered by an external signal. Manual measurement triggering is also available.

- Apply a trigger signal at the EXT. I/O connector (p. 107)
- Send the ***TRG** command by communications interface (p. 155)
- Press **F4** [MANU] (only appears when EXT is selected)

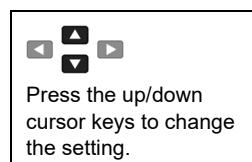

NOTE

- When internal triggering is selected, the EXT. I/O **TRIG** signal and the ***TRG** command are ignored (except for memory storage and statistical calculations).
- To measure samples such as inductors that require time to settle, adjust delay time (DELAY2). Start with a long delay, and gradually shorten it while watching for the measurement value to settle.

See: "4.2 Setting Pre-Measurement Delay" (p. 48)


- When external triggering [EXT] is enabled, the Auto-Memory function is forcibly disabled (OFF).

1 Open the Basic Settings screen.


The Basic Settings screen appears.

2 Select internal [INT] or external [EXT] trigger.

2

Internal trigger
External trigger
(default)

Press **F3** [EXT] to display the **F4** [MANU] indicator.
Press to trigger a measurement manually.

3 Return to the Measurement screen.

F1

Continuous measurement (**:INITiate:CONTinuous ON**) is the normal trigger state when operating from the front panel. Selecting the internal [INT] trigger source activates continuous triggering ("free-run"). When external [EXT] triggering is selected, each external trigger event initiates one measurement.

Continuous measurement can be disabled by sending the **:INITiate:CONTinuous OFF** command via RS-232C or GP-IB. When continuous measurement is disabled, trigger acceptance is controlled only by the host (computer or PLC).

See: Refer to "Trigger" (p. 169) and "9.8 Data exporting methods" (p. 184) for trigger commands.

3.5 Selecting the Measurement Range

The measurement range can be set as follows.

When the threshold values of the comparator are set with the panel keys, the measurement range is selected automatically according to the settings (reference values or upper thresholds, refer to the following table).

When the comparator settings are made by remote control commands, the measurement range is not affected.

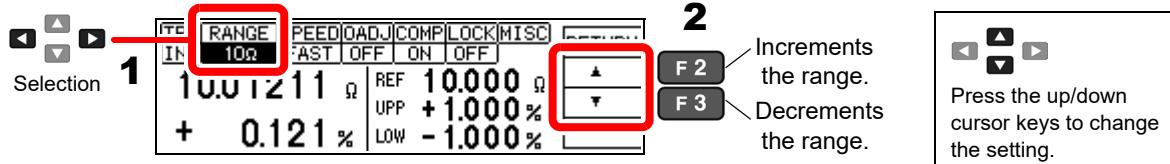
Changing the Range

If the resistance value of the measuring object is very small compared to the measurement range, the measurement error increases.

NOTE

Ranges 1000 Ω range or higher (LOW POWER: OFF) cannot be used for inductor measurements.

Auto-Range (when making comparator settings)


Reference value (REF%) and upper limit (ABS) ranges	Selected range				
	LOW POWER:OFF			LOW POWER:ON	
	RM3542C-3	RM3542C-1 RM3542C-2	RM3542C-4 RM3542C-5	RM3542C-1 RM3542C-2 RM3542C-3	RM3542C-4 RM3542C-5
0.000 mΩ to 10.009 mΩ	10 mΩ	100 mΩ	100 mΩ	1000 mΩ	1000 mΩ
10.01 mΩ to 100.09 mΩ	100 mΩ				
100.1 mΩ to 1000.9 mΩ	1000 mΩ	1000 mΩ	1000 mΩ	300 Ω	1000 Ω
1.001 Ω to 3.009 Ω	3 Ω	3 Ω	10 Ω		
3.010 Ω to 10.009 Ω	10 Ω	10 Ω	10 Ω	1000 Ω	
10.01 Ω to 100.09 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω
100.1 Ω to 300.9 Ω	300 Ω	300 Ω	1000 Ω	300 Ω	1000 Ω
301.0 Ω to 1000.9 Ω	1000 Ω	1000 Ω		1000 Ω	
1001.0 Ω to 1200.0 Ω	10 kΩ	10 kΩ	10 kΩ		
1200.0 Ω to 10.009 kΩ			100 kΩ	1000 kΩ	
10.01 kΩ to 30.09 kΩ	30 kΩ	30 kΩ			
30.10 kΩ to 100.09 kΩ	100 kΩ	100 kΩ	1000 kΩ	10 MΩ	100 MΩ
100.1 kΩ to 300.9 kΩ	300 kΩ	300 kΩ			
301.0 kΩ to 1000.9 kΩ	1000 kΩ	1000 kΩ	100 MΩ	100 MΩ	100 MΩ
1.001 MΩ to 3.009 MΩ	3 MΩ	3 MΩ			
3.010 MΩ to 10.009 MΩ	10 MΩ	10 MΩ	100 MΩ	100 MΩ	100 MΩ
10.01 MΩ to 30.09 MΩ	30 MΩ	30 MΩ			
30.10 MΩ to 120.00 MΩ	100 MΩ	100 MΩ	100 MΩ	100 MΩ	100 MΩ

Manual Range Selection

1 Open the Basic Settings screen.

2 Select the range.

Selectable ranges depend on the low-power resistance setting (p. 30).

- When low-power resistance measurement is set to OFF: 10 mΩ, 100 mΩ, 1000 mΩ, 3 Ω, 10 Ω, 100 Ω, 300 Ω, 1000 Ω, 10 kΩ, 30 kΩ, 100 kΩ, 300 kΩ, 1000 kΩ, 3 MΩ, 10 MΩ, 30 MΩ, 100 MΩ (default)
- When low-power resistance measurement is set to ON: 1000 mΩ, 3 Ω, 10 Ω, 100 Ω, 300 Ω, 1000 Ω

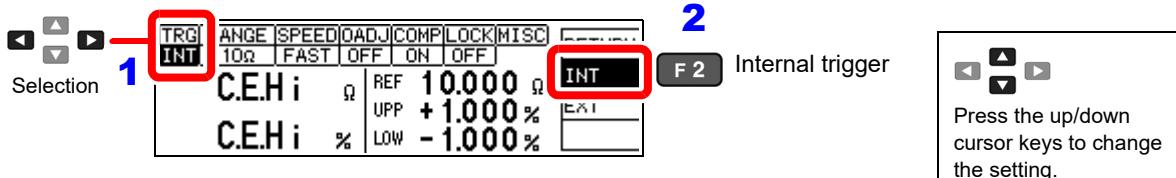
3 Return to the Measurement screen.

3.6 Measuring with Two-terminal Wiring (Zero Adjustment)

When four-terminal measurement (Kelvin connection) is not practical such as when measuring very small samples, the additional inherent resistance of the two-terminal wiring should be canceled out. The zero-adjustment function can cancel out up to $10\ \Omega$ additional resistance.

NOTE

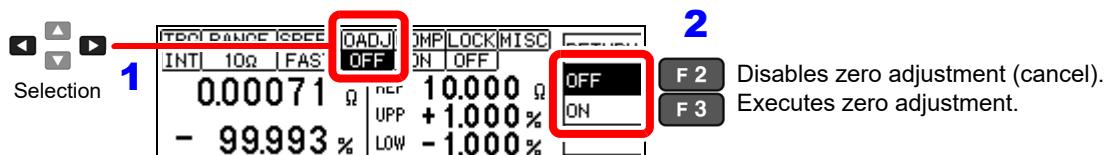
Before Zero Adjustment


- The guaranteed accuracy of the instrument applies to four-terminal connections without zero adjustment. When using four-terminal connections, do not execute zero adjustment.
- Executing zero adjustment with incorrect wiring may amplify measurement error. However, zero adjustment may be needed even with four-terminal measurements if they are affected by a large offset voltage, such as due to thermal emf (LOW POWER: OFF, in $100\ \Omega$ to $100\ M\Omega$ range).
- Execute zero adjustment when the ambient temperature has changed, or when a probe is replaced.

Execute zero adjustment after the warm-up period following power on.

1 Open the Basic Settings screen.

2 Select the internal [INT] trigger mode.


3 Short the probes together.

4 Confirm that the measurement value does not exceed $10\ \Omega$.

If no measurement value is displayed, increment the measurement range (p. 34).

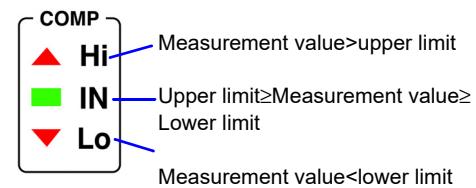
5 Select whether to enable or disable zero adjustment.

After confirming that the measurement value does not exceed $10\ \Omega$, execute zero adjustment.

6 Return to the Measurement screen.

When Zero Adjustment Fails

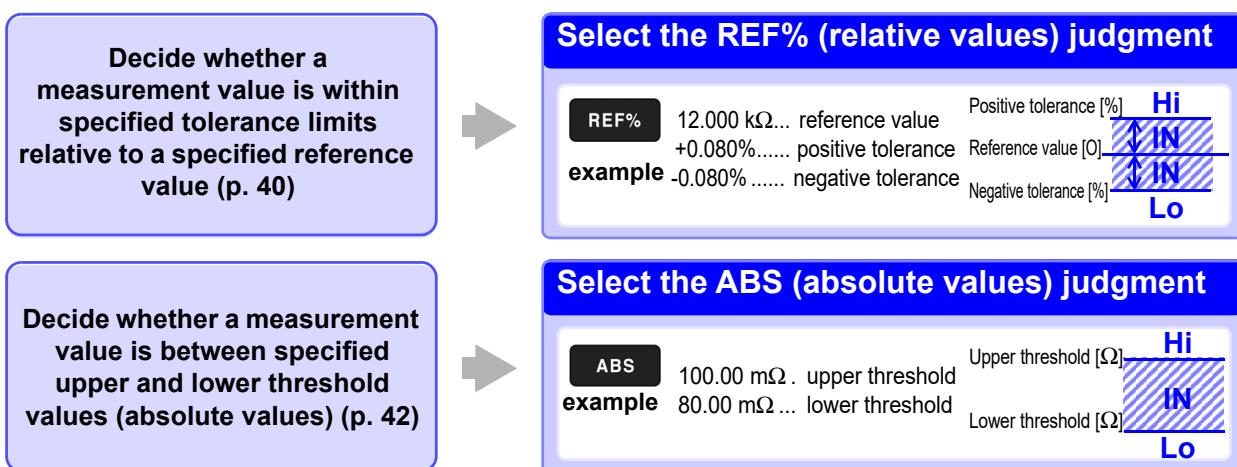
If zero adjustment fails, the following error message appears.


Before attempting zero adjustment again, confirm the following:

- When measuring with the $10\ \Omega$ range, confirm that the displayed value does not exceed $10\ \Omega$.
- Confirm that the probe connections are correct.

3.7 Judging Measurement Values (Comparator Function)

Comparator results can be output to an external device (via EXT. I/O connector) when the comparator reference/tolerance or upper/lower threshold values have been set.


See: "Chapter 8 External Control" (p. 107)

Comparator results are also indicated by the COMP Hi/IN/Lo panel lamps, and by audible beeper (disabled by default).

See: "Setting the Comparator Judgment Beeper" (p. 82)

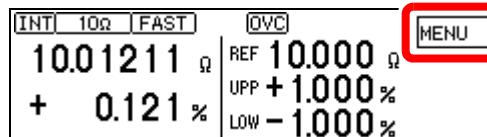
The comparator judgment mode can be set as one of the following:

Before Using the Comparator Function

- When the measurement value is out of the selected measurement range, comparator judgment indicators appear as follows. In the event of a measurement fault, no judgment is made.

See: "3.8 Confirming Faulty Measurements" (p. 44)

Out-of-Range Display	Comparator judgment indicators (COMP indicator LEDs)
+OvrRng	Hi
-OvrRng	Lo


- If power is turned off during comparator setting, changes to settings are lost as they revert to their previous values. To accept the settings, press the **ENTER** key.
- When setting comparator criteria, the appropriate range is selected automatically. Refer to "Auto-Range (when making comparator settings)" (p. 34) for range settings.
- The comparator's reference, upper limit, and lower limit values are displayed on the instrument's screen rounded to 4 or 5 digits. However, the judgment is performed using unrounded values.

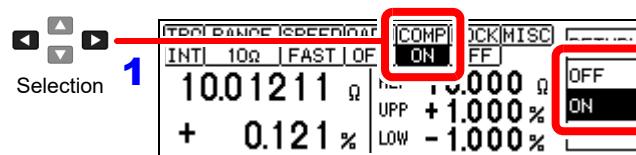
Enabling and Disabling the Comparator Function

The comparator function is enabled by default.

When the function is disabled, comparator settings are ignored.

1 Open the Basic Settings screen.

F 1


The Basic Settings screen appears.

3

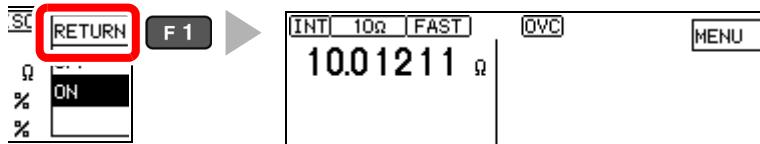
2 Enable or disable the comparator function.

On the RM3542C-3, BIN can be selected.

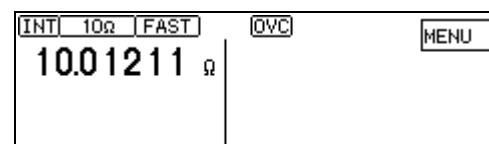
See: "4.18 BIN Measurement Function (RM3542C-3)" (p. 78)

2

Disables the function.


F 2

Enables the function.


F 3

Press the up/down cursor keys to change the setting.

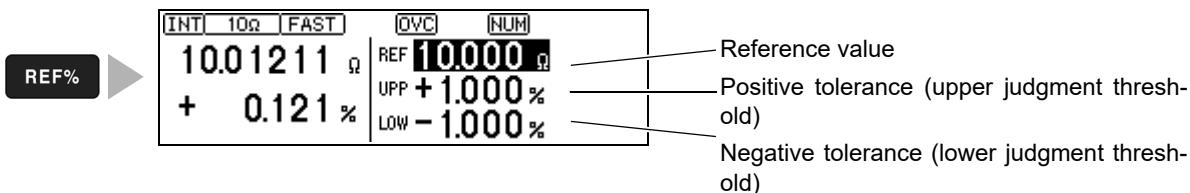
3 Return to the Measurement screen.

F 1

(When the function is disabled)

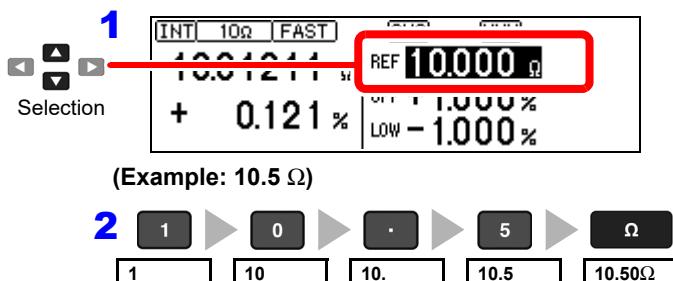
Comparator judgments are indicated only when the function is enabled.

Decide According to Reference Value and Tolerance (REF% Mode)


$$\text{Relative value} = \left(\frac{\text{Measurement value}}{\text{Reference value}} - 1 \right) \times 100 [\%]$$

Setting range:
 -9.999% to +9.999% (When 10% or less)
 -99.99% to +99.99% (When more than 10%)

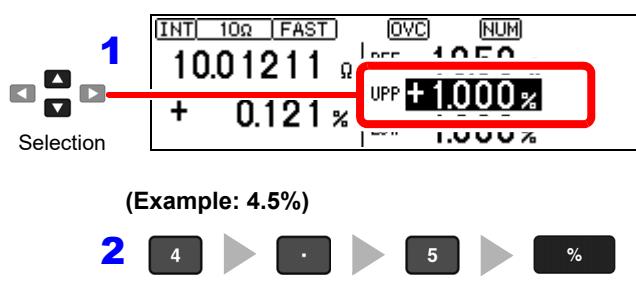
Example: Set a reference value of 10.5Ω with $+4.5\%$ and -4.5% judgment tolerances.


To abort the setting process, press **ESC**. Settings are abandoned and the display returns to the previous screen.

1 Open the relative tolerance setting screen.

2 Set the reference value.

Pressing an inoperative key during setting sounds a low-pitch beep (when the key beeper is enabled).


To Reset Numerical Values

BACK SPACE Deletes entered digits.
 This key is enabled only when entering numerical values.

To change the value after selecting the units, use the cursor \blacktriangle \blacktriangledown keys to select the item to change, then enter the new value with the numeric keys.

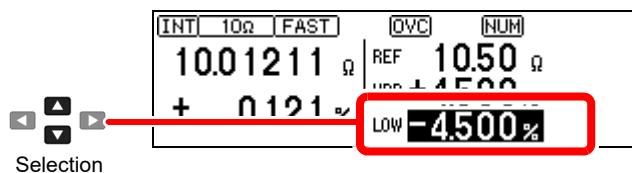
Press the units key to accept the setting and move the cursor to the upper threshold.

3 Set the positive tolerance.

To Reset Numerical Values

BACK SPACE Deletes entered digits.
 This key is enabled only when entering numerical values.

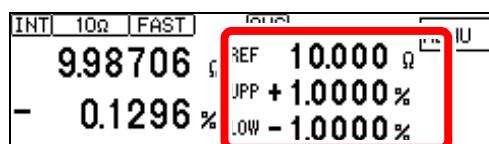
To change the value after selecting the units, use the cursor \blacktriangle \blacktriangledown keys to select the item to change, then enter the new value with the numeric keys.

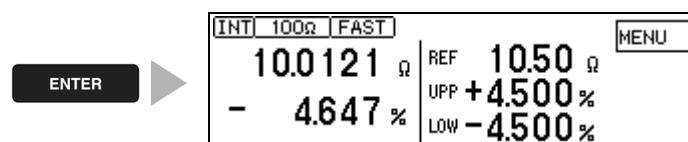

To Set a Negative Value

+- Press this key to change the sign, as needed.

Press the **%** key to accept the setting and move the cursor to the negative tolerance value.

The negative tolerance is initially set to the same absolute value as the positive tolerance (change as needed).


4 Set the negative tolerance in the same way (as needed)


Comparator Resolution: 1 ppm (RM3542C-3 only)

On the RM3542C-3, comparator thresholds can be set with a resolution of 1 ppm.

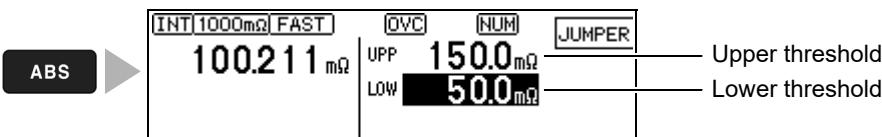
3

5 Accept the settings and return to the Measurement screen.

NOTE

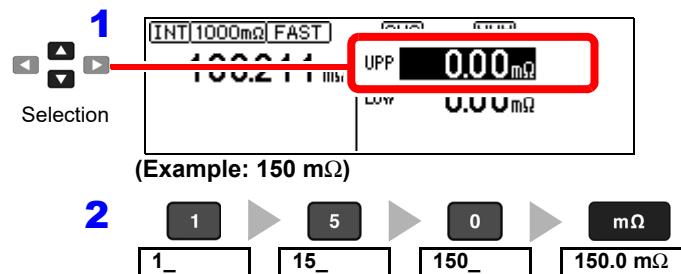
- Internal calculations are performed on floating-point values, and judgments round up any fraction of the least-significant digit.
- Displayed values of the reference and tolerances are rounded according to the selected range. Internal calculations use data not rounded off, so judgments are based on the entered (setting) values.
- An error message appears if you press **ENTER** with the positive tolerance < the negative tolerance.
See: "11.3 Error Displays and Solutions" (p. 223) (ERR:001)

Decide According to Upper/Lower Thresholds (ABS Mode)


Setting example: Upper threshold 150 mΩ, lower threshold 50 mΩ

To abort the setting process, press **esc**. Settings are abandoned and the display returns to the previous screen.

1 Open the absolute value threshold setting screen.

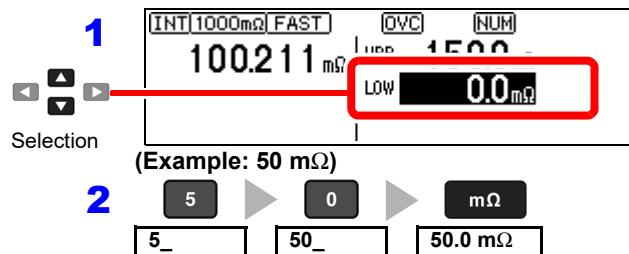

On the RM3542C-1, RM3542C-2, and RM3542C-3, JUMPER can be selected.

See: "4.16 Jumper Resistance Measurement Support Function (RM3542C-1, RM3542C-2 or RM3542C-3)" (p. 71)

2 Set the positive tolerance.

Pressing an inoperative key during setting sounds a low-pitch beep (when the key beeper is enabled). Error message is not displayed.

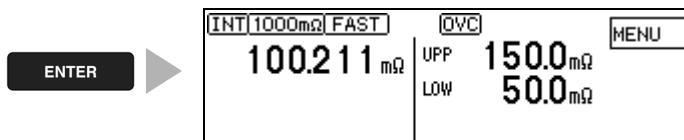
To Reset Numerical Values


Deletes entered digits.

BACK SPACE This key is enabled only when entering numerical values.

To change the value after selecting the units, use the cursor **▲▼** keys to select the item to change, then enter the new value with the numeric keys.

Press the units key to accept the setting and move the cursor to the lower threshold value.


3 Set the negative tolerance in the same way.

Press the units key to accept the setting and move the cursor to the upper threshold.

4

Accept the settings and return to the Measurement screen.

NOTE

- Internal calculations are performed on floating-point values, and judgments round up any fraction of the least-significant digit.
- Displayed values of the reference and tolerances are rounded according to the selected range. Internal calculations use data not rounded off, so judgments are based on the entered (setting) values.
- An error message appears if you press **ENTER** with the positive tolerance < the negative tolerance.
See: "11.3 Error Displays and Solutions" (p. 223) (ERR:001)

3

3.8 Confirming Faulty Measurements

When a measurement is not performed correctly, a measurement fault indicator appears and a measurement fault signal is output at the $\overline{\text{ERR}}$ pin of the EXT. I/O connector (except for out-of-range detection).

The instrument detects measurement faults by the following four methods.

Measurement out of range

See: "Out-of-Range Detection Function" (p. 45)

Display

Appears when the measurement value is outside of the measurement or display range.

Check for a broken sample component.

+OvrRng

The comparator result is Hi when +OvrRng is displayed, and Lo when -OvrRng is displayed.

-OvrRng

No external measurement fault signal ($\overline{\text{ERR}}$) is output.

Contact Check Fault

See: "4.6 Checking for Poor or Improper Contact (Contact Check Function)" (p. 55)

Display

The resistance between the H_{POT} and H_{CUR} probe contacts, and between the L_{POT} and L_{CUR} probe contacts, are measured and compared with specified contact fault values.

C.E. Hi

An error message appears when the measurement value reaches or exceeds the specified contact fault values.

C.E. Lo

If this error persists, probe wear or cable failure may be the cause.

If the error is not cleared by shorting the tips of a known-good measurement probe, the instrument requires repair.

Voltage Monitor fault

See: "4.8 Detecting Measurement Voltage Faults (Voltage Level Monitor Function)" (p. 60)

Display

This method monitors the stability of the voltage between H_{POT} and L_{POT} probe contacts.

C.E. Volt

An error message appears when voltage instability is detected due to chattering of the probe contacts.

If this error is displayed frequently, the probes may be degraded due to wear.

C.E. Volt may also be displayed when external noise is strong.

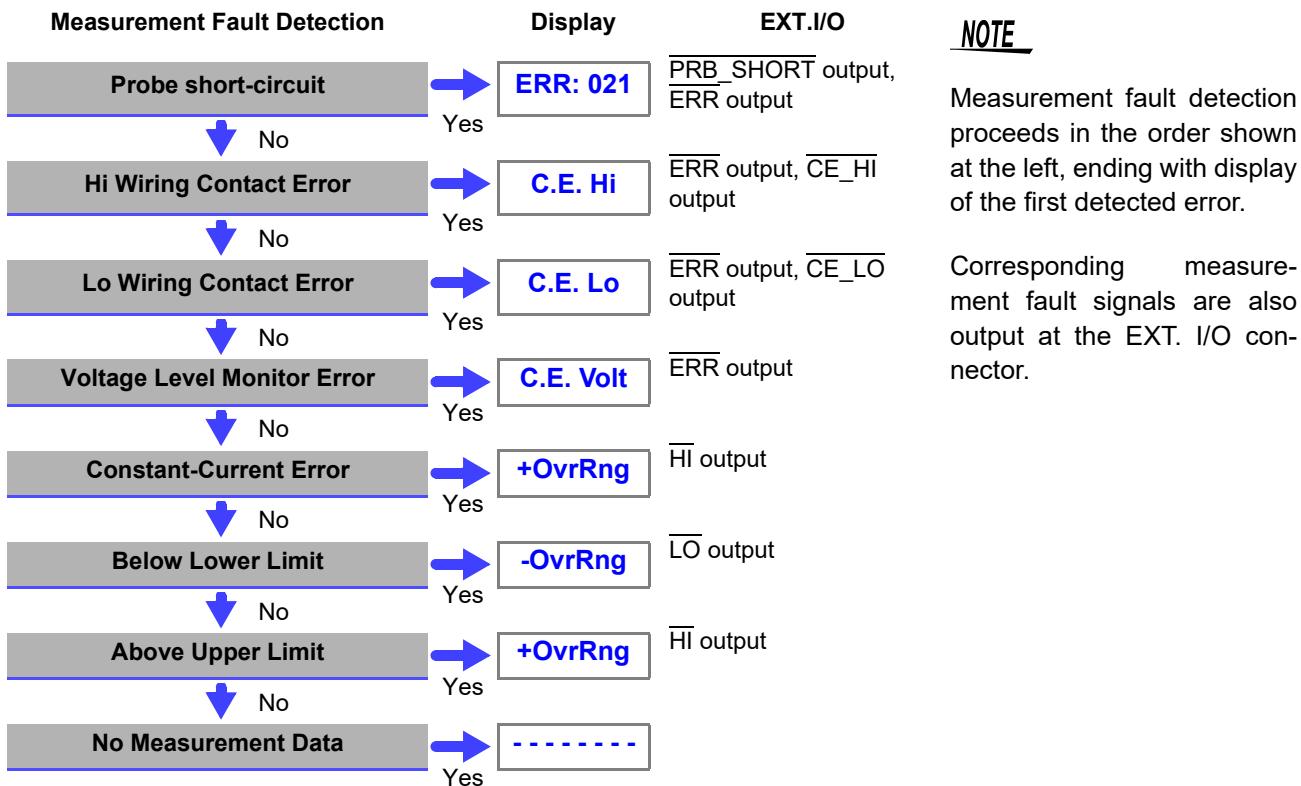
Current Monitor Fault

See: "Current Monitor Function" (p. 45)

This method monitors the regulated measurement current for normal flow through the measuring object.

An error is detected mainly when a measurement fault occurs due to an open measuring object or poor contact between the H_{CUR} and L_{CUR} probes.

The error display depends on the contact check and voltage level monitor states (refer to the table below).


This display appears after changing measurement settings and before the next measurement is performed.

Display Examples: Display Measurement State and Appearance with Open-Circuit Probe

Display Measurement State		Current Monitor Results	
		Normal (PASS)	Fault (FAIL)
Contact Check Results Voltage Level Monitor Results	Normal (PASS)	Display: Measurement Value COMP indicator: According to the measurement value	Display: +OvrRng / -OvrRng COMP indicator: Hi / Lo (when connection to the measuring object is broken)
	Fault (FAIL)	Display: C.E. Hi / C.E. Lo / C.E. Volt COMP indicator: No judgment EXT.I/O: ERR signal output	Display: C.E. Hi / C.E. Lo / C.E. Volt COMP indicator: No judgment EXT.I/O: ERR signal output

The measurement fault display differs according to detection order and settings.

Measurement Fault Detection Order

3

Out-of-Range Detection Function

Examples of Out-of-Range Faults

Out-of-Range Detection	Measurement Example
The measurement value is outside of the measurement range.	10 kΩ range is used to measure 13 kΩ.
The relative tolerance (%) display of the measurement value exceeds the display range (999.999%).	Measuring 500 Ω (+2400%) with a reference value of 20 Ω
The zero-adjusted value is outside of the display range.	In the 1 Ω range with 0.5 Ω zero-adjustment in effect, measuring 0.1 Ω provides a zero-adjusted value of -0.4 Ω, which is outside of the display range.
While measuring, input voltage exceed the A/D converter input range.	Measuring a large resistance value in an electrically noisy environment

Current Monitor Function

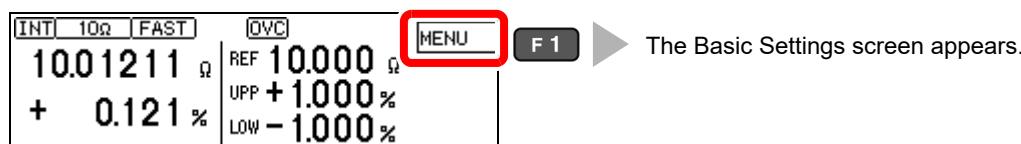
The instrument supplies constant measurement current through the measuring object via the H_{CUR} and L_{CUR} probes. A current monitor fault occurs if constant current cannot be attained. If the contact check and voltage level monitor results are normal, the out-of-range and comparator result displays indicate "Hi".

Example of Current Monitor Fault

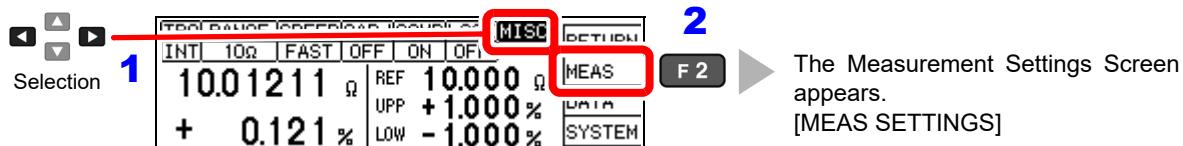
- Broken DUT (open work)
- H_{CUR} or L_{CUR} probe contact fault
- H_{CUR} or L_{CUR} cable break

Customizing Measurement Settings

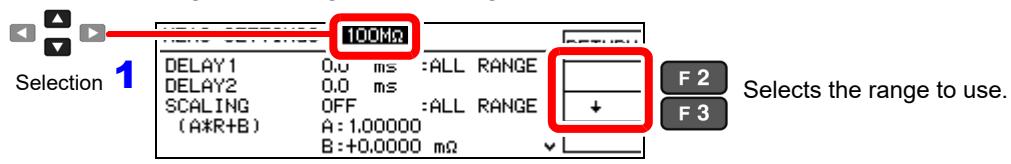
Chapter 4


(set as needed)

Change measurement settings as appropriate for your application.
Refer to "Detailed Settings Screen" (p. 21) for the available settings.


4.1 Making Range-Specific Measurement Settings

The setting affects only the selected range (Sections 4.2 to 4.9 only, excluding the settings for DELAY1).


1 Open the Basic Settings screen.

2 Open the Measurement Settings Screen.

3 Select the range to change the setting.

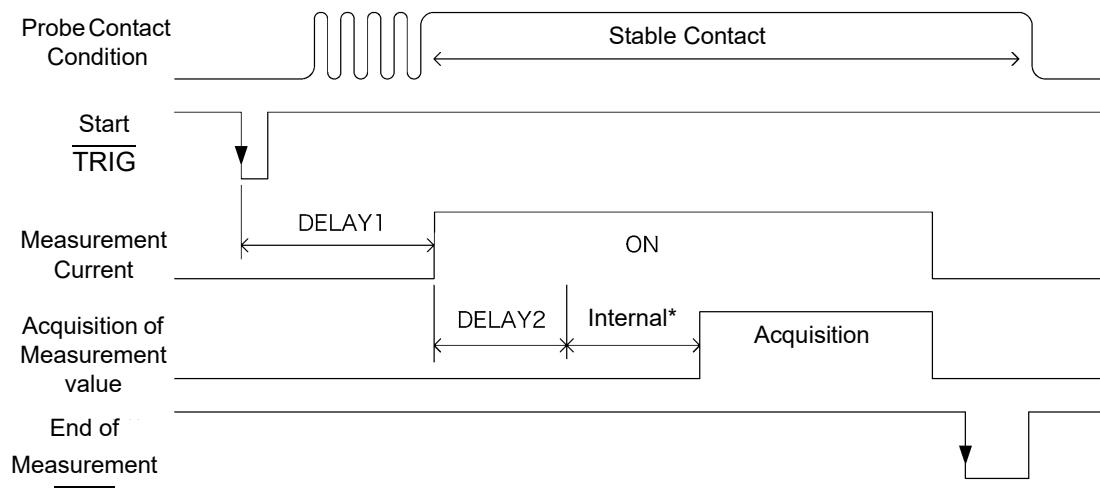
4 Set the items as needed.

4.2 Setting Pre-Measurement Delay

This setting specifies the delay between trigger signal input and the start of measurement. Adjust this setting to delay measurement until the measurement value has time to stabilize, so that even if the sample is connected after triggering, measurement starts only after the specified delay. The delay can be set by two methods, as follows.

Adjust this setting to allow for probe contact mechanical stabilization.

Set **DELAY1**


The **DELAY1** setting is common to all ranges. The default setting is 0 ms (corresponding to trigger signal input at the same time as probe contacts become stable). Setting **DELAY1** affects measurements in all ranges.

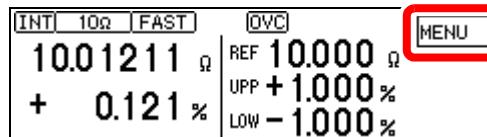
Adjust this setting to allow for stabilization of the measurement sample.

Set **DELAY2**

Set **DELAY2** to the time needed for stabilization after measurement current is applied, such as may be required for inductive components. The setting affects only the selected range. The default setting is 0 ms (corresponding to resistance measurement of non-inductive components).

DELAY1 and **DELAY2** Timing Chart

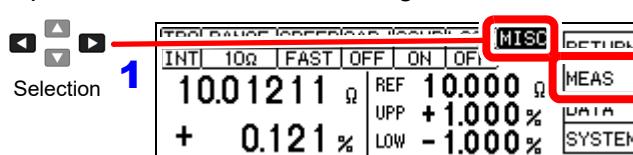
* Internal delay is provided to suit purely resistive (non-reactive) measuring objects, and is different for each measurement range.


See: "8.2 Timing Chart" (p. 112)

Estimated Delay time

Set the delay so that inductance does not affect measurements.

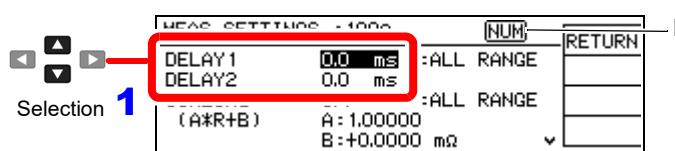
To fine tune the delay, begin with a longer delay than necessary, then gradually shorten it while watching the measurement value.


1 Open the Basic Settings screen.

F 1

The Basic Settings screen appears.

2 Open the Measurement Settings Screen.



2

The Measurement Settings Screen appears.
[MEAS SETTINGS]

4

3 Set [DELAY1] or [DELAY2].

Numerical keypad

Selection

1

[DELAY1] is common to all ranges, while [DELAY2] can be set for each range independently (p. 47).

2

0 9 / . Setting range: 0.0 ms (default) to 100.0 ms

3

ENTER

4 Return to the Measurement screen.

F 1

The confirmation screen appears.

F 1

Returns to the setting screen.

F 2

Saves and return to previous screen.

F 3

Discards setting and return to previous screen.

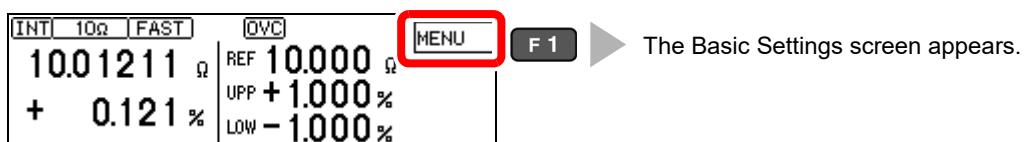
4.3 Compensating Measured Values (Scaling Function) (RM3542C-1, RM3542C-2 or RM3542C-3)

When measuring the resistance of current sensing resistors, there may be a discrepancy between the resistance value at the time of mounting on the board being used and the resistance value obtained when measuring the component alone (due to the effects of the probing location and other factors). The scaling function corrects the measured resistance value obtained from the component alone to yield the resistance value during actual use. Scaling is performed by mean of the following equations:

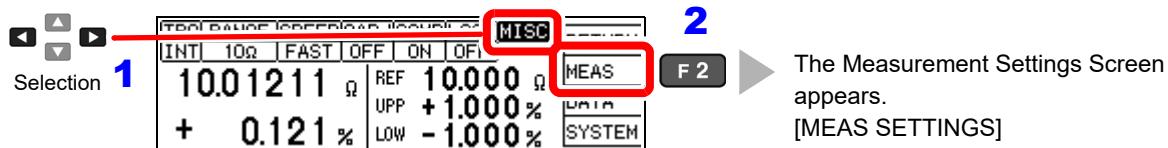
$$R_S = A \times R + B$$

R : Measured value before compensation

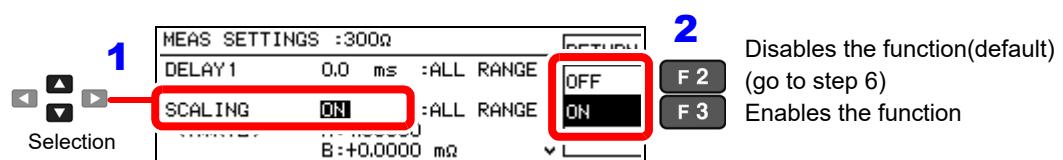
R_S : Resistance value after compensation

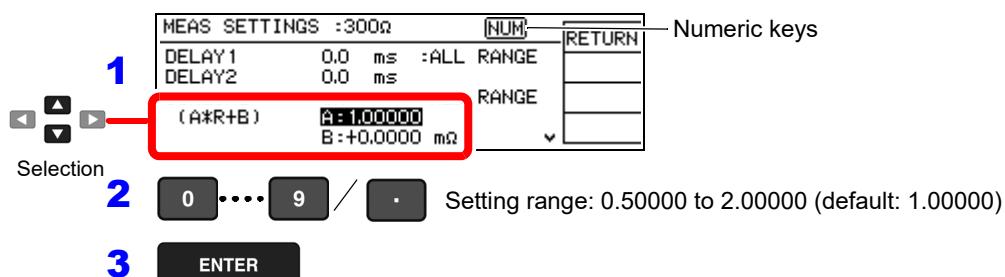

A : Compensation coefficient setting range: 0.50000 to 2.00000 (default : 1.00000)

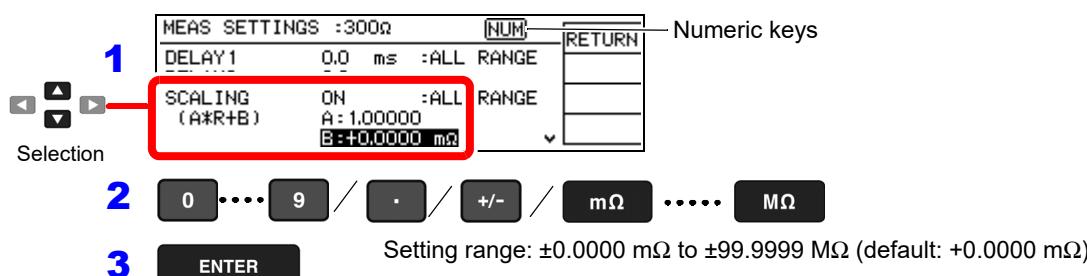
B : Offset resistance setting range: $\pm 0.0000 \text{ m}\Omega$ to $\pm 99.9999 \text{ M}\Omega$ (default : 0.0000 $\text{m}\Omega$)

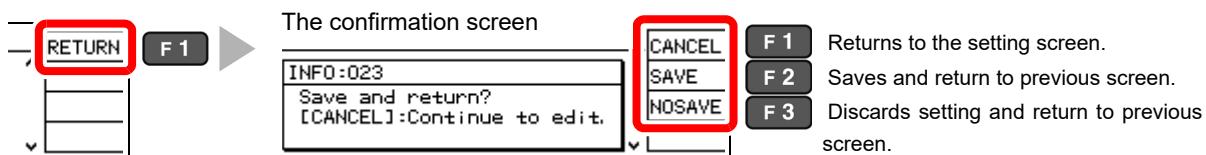

NOTE

- Scaling calculation will be performed on a measured value after zero-adjustment. Consequently, measured value may not be equal to zero after zero-adjustment.
- Changing the comparator settings automatically sets the scaling function to OFF.


1 Open the Basic Settings screen.


2 Open the Measurement Settings Screen.


3 Enable or disable the scaling function.


4 Set the compensation coefficient.

5 Set the offset.

6 Return to the Measurement screen.

4.4 Setting the Measurement Integration Time Option

The integration time can be optionally set for each range by selecting FAST, MED, or SLOW measurement speed.

Integration time can be set in ms or PLC* units.

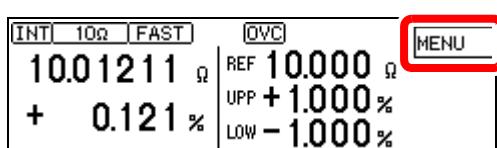
* PLC = Power Line Cycle, where one PLC is the time equivalent to one period of the power line waveform.

At 50 Hz, one PLC = 1/50th of a second, and at 60 Hz, one PLC = 1/60th of a second.

PLC setting units are useful where measurements may be affected by power line noise (high- or low-resistance measurements)

Default setting

Range	LOW POWER: OFF			LOW POWER: ON			OVC	
	Integration time			FAST	Integration time			
	FAST	MED	SLOW		FAST	MED		
10 mΩ ^{*1}	0.5 ms	5.0 ms	1 PLC	ON	–	–	–	
100 mΩ	0.5 ms	5.0 ms	1 PLC	ON	–	–	–	
1000 mΩ	0.3 ms	2.5 ms	1 PLC	ON	0.5 ms	5.0 ms	1 PLC	
3 Ω ^{*2}	0.3 ms	2.5 ms	1 PLC	ON	0.5 ms	5.0 ms	1 PLC	
10 Ω	0.3 ms	2.5 ms	1 PLC	ON	0.5 ms	5.0 ms	1 PLC	
100 Ω	0.3 ms	3.0 ms	1 PLC	OFF	0.3 ms	2.5 ms	1 PLC	
300 Ω ^{*2}	0.3 ms	3.0 ms	1 PLC	OFF	0.3 ms	2.5 ms	1 PLC	
1000 Ω	0.3 ms	3.0 ms	1 PLC	OFF	0.3 ms	2.5 ms	1 PLC	
10 kΩ	0.3 ms	3.0 ms	1 PLC	OFF	–	–	–	
30 kΩ ^{*2}	0.3 ms	3.0 ms	1 PLC	OFF	–	–	–	
100 kΩ	0.5 ms	3.0 ms	1 PLC	OFF	–	–	–	
300 kΩ ^{*2}	0.5 ms	3.0 ms	1 PLC	OFF	–	–	–	
1000 kΩ	1.5 ms	5.0 ms	1 PLC	OFF	–	–	–	
3 MΩ ^{*2}	1.5 ms	5.0 ms	1 PLC	OFF	–	–	–	
10 MΩ	2.5 ms	1 PLC	1 PLC	OFF	–	–	–	
30 MΩ ^{*2}	2.5 ms	1 PLC	1 PLC	OFF	–	–	–	
100 MΩ	1 PLC	2 PLC	4 PLC	OFF	–	–	–	

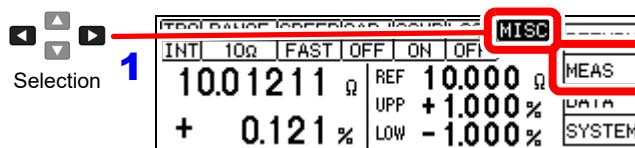

When OVC is enabled, two measurements are performed at the above integration times.

*1. RM3542C-3

*2. RM3542C-1, RM3542C-2, RM3542C-3

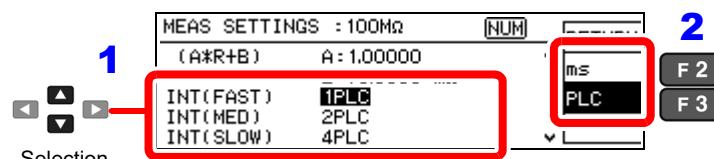
1

Open the Basic Settings screen.


F1

The Basic Settings screen appears.

2

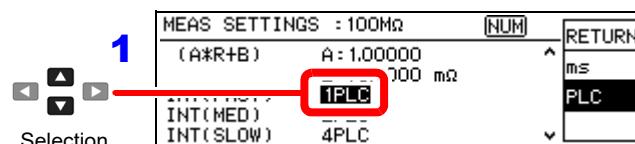

Open the Measurement Settings Screen.

2

The Measurement Settings Screen appears.
[MEAS SETTINGS]
 (The settings for the current measurement range are displayed.)

3

Select the integration setting units.


2

F 2 Sets in units of time.
F 3 Sets in units of power line cycles.

The setting is specific to the selected range (p. 47).

4**4**

Select the integration time.

2

0 ... **9** / .

3**ENTER**

Setting range:

- When setting in ms units:
0.1 ms to 100.0 ms
- When setting power-line-cycle units:
1 to 6 PLC (60 Hz), 1 to 5 PLC (50 Hz)

5

Return to the Measurement screen.

The confirmation screen appears.

F 1

Returns to the setting screen.

F 2

Saves and return to previous screen.

F 3

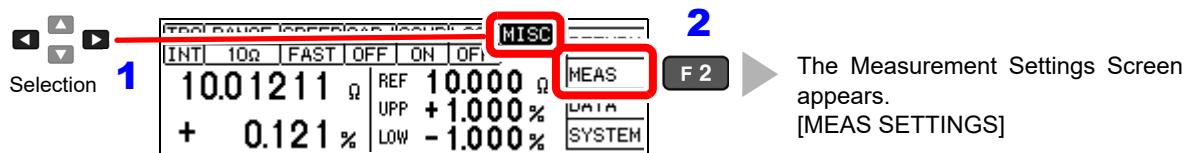
Discards setting and return to previous screen.

NOTE

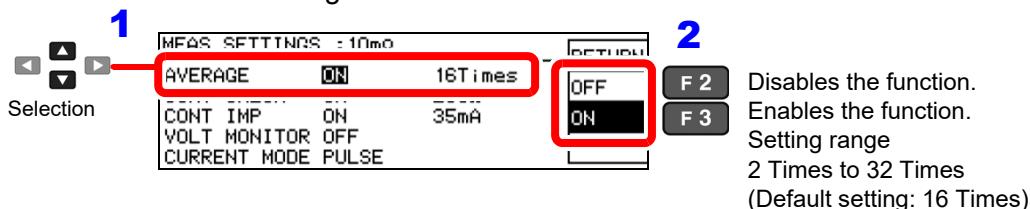
- The instruments accuracy specifications are applicable only with the default integration times. Investigate your measurement requirements carefully before changing the integration time.
- When the effects of power line noise can be ignored, the integration time can be set longer than the default to reduce scattering of measurement values. On the other hand, if the integration time is too short, scattering increases. For high- or low-resistance and low-power resistance measurements that are easily affected by power line noise, we suggest setting according to the power line period (PLC units).

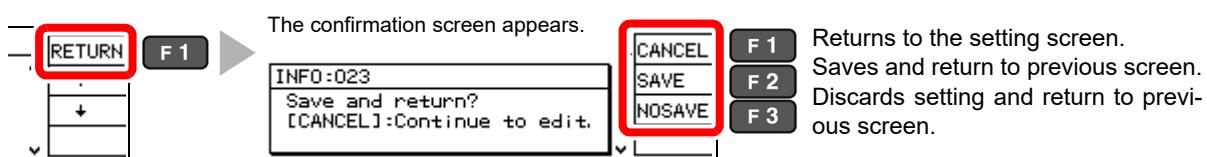
4.5 Average Function (RM3542C-3)

This function stabilizes results by averaging multiple measured values.


NOTE

- When the average function is enabled, the measurement time for external trigger measurement (and the :READ? command) increases by the number of averages compared to when it is disabled.
- For internal triggering, a moving average is applied, so the display update speed does not change.


1 Open the Basic Settings screen.


2 Open the Measurement Settings Screen.

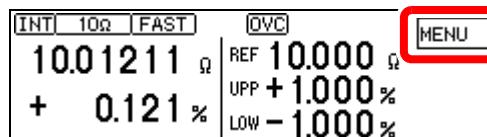
3 Set the number of averages.

4 Return to the Measurement screen.

4.6 Checking for Poor or Improper Contact (Contact Check Function)

This function detects poor contact between the probes and measuring object, and broken measurement probes.

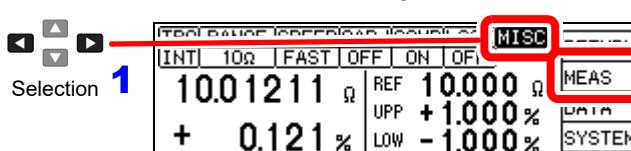
The instrument continually monitors the resistance between the H_{CUR} and H_{POT} probes and the L_{CUR} and L_{POT} probes from the start of integration (including response time) and while measuring. When the resistance is outside of the specified value, a contact check fault occurs and the **C.E. Hi** or **C.E. Lo** error message appears. No comparator judgment is applied to the measurement value.


When these error messages appear, check the probe contacts, and check for broken measurement probes.

(If the error is not cleared by shorting the tips of a known-good measurement probe, the instrument requires repair.)

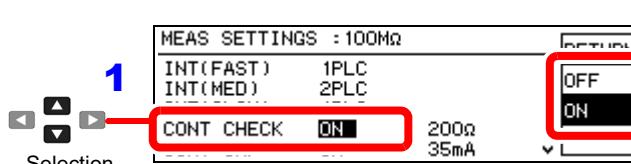
NOTE

- During low-resistance measurement, poor contact of the H_{CUR} or L_{CUR} probe may be detected as an out-of-range measurement.
- When contact checking is disabled, measurement values may be displayed even when a probe is not contacting the measuring object.


1 Open the Basic Settings screen.

F 1

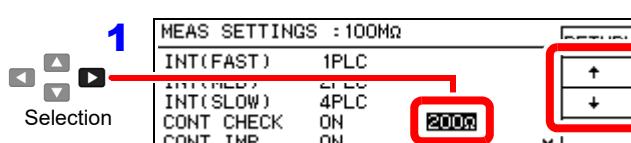
The Basic Settings screen appears.


2 Open the Measurement Settings Screen.

F 2

The Measurement Settings Screen appears.
[MEAS SETTINGS]

3 Enable or disable the function.

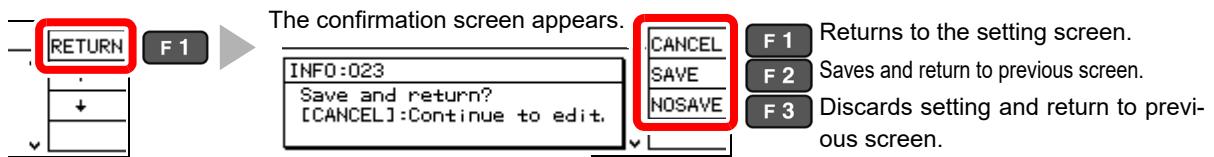


F 2

Disables the function (go to step 5).
F 3
Enables the function (default).

The setting is specific to the selected range (p. 47)

4 Select the contact check fault threshold resistance.


F 2

50 Ω, 100 Ω, 150 Ω, 200 Ω (default), 300 Ω, 400 Ω, 500 Ω

A contact fault occurs when a measured value exceeds the threshold setting.

5

Return to the Measurement screen.

4.7 Improving Probe Contact (Contact Improvement function)

Probe contacts can be improved by applying current from the POT to the CUR probes before measuring.

The Contact improvement function applies voltage to the sample. Be careful when measuring samples with characteristics that may be affected.

The current used for the Contact improvement functions can be selected as follows.

17 mA, 25 mA, 35 mA (default), 50 mA

Higher current provides more effective contact improvement, but at the cost of faster probe deterioration.

Contact Improver current can be set to be disabled (OFF), enabled (ON), or PULSE.

The PULSE setting applies the contact improvement current for approx. 100 μ s to 300 μ s immediately before measurement. The PULSE setting is useful to decrease Joule heating of the DUT based on contact improvement current if the measuring object is susceptible to change in characteristics.

	10 m Ω range to 100 k Ω range	300 k Ω range to 100 M Ω range
DUT current *	2 mA max.	60 mA max.
DUT voltage	20 V max.	15 V max.

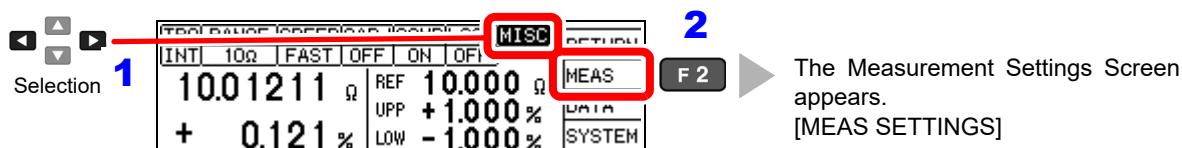
*. It takes several microseconds for the DUT current to reach the steady-state value. Until the steady-state value is reached, a transient current that is approximately equal to the contact improvement current setting (default setting: 35 mA) will flow.

Setting	Timing chart (Contact Improvement function)	
OFF	<p>Probe Contact Condition</p> <p>Start TRIG</p> <p>Measurement</p> <p>Internal delay *</p> <p>Measuring</p> <p>Contact Improver current</p> <p>OFF</p>	
ON	<p>Probe Contact Condition</p> <p>Start TRIG</p> <p>Measurement</p> <p>Internal delay *</p> <p>Measuring</p> <p>Contact Improver current</p> <p>ON OFF ON</p>	

*Internal delay is different for each range.

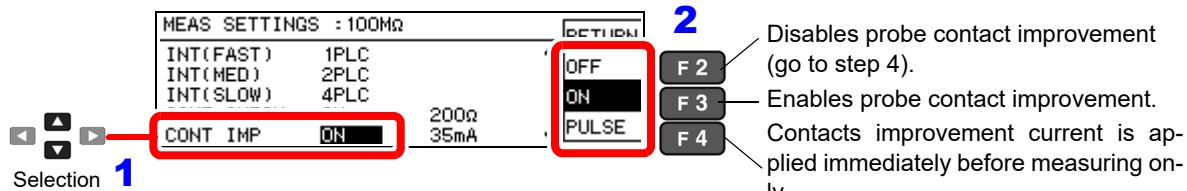

Setting	Timing chart (Contact Improvement function)
PULSE When both applied voltage limiter and low-power resistance measurement function are disabled.	<p>Probe Contact Condition</p> <p>Start TRIG</p> <p>DELAY1</p> <p>Approx. 100 μs</p> <p>DELAY2</p> <p>Internal delay *</p> <p>Measuring</p> <p>OFF ON OFF</p>
PULSE When the applied voltage limit function or low-power resistance measurement function is enabled.	<p>Probe Contact Condition</p> <p>Start TRIG</p> <p>DELAY1</p> <p>Approx. 300 μs</p> <p>DELAY2</p> <p>Internal delay *</p> <p>Measuring</p> <p>OFF ON OFF</p>

*Internal delay is different for each range.

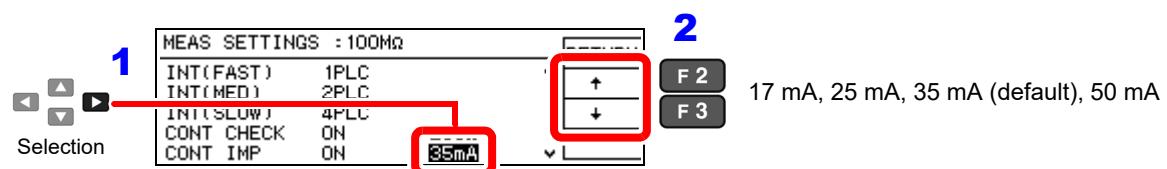

NOTE

For ranges between 300 k Ω and 100 M Ω , the [PULSE] setting is enabled by default. Before measuring in the ranges from 300 k Ω to 100 M Ω with the Contact Improvement function set to [ON], verify that measurements are not biased.

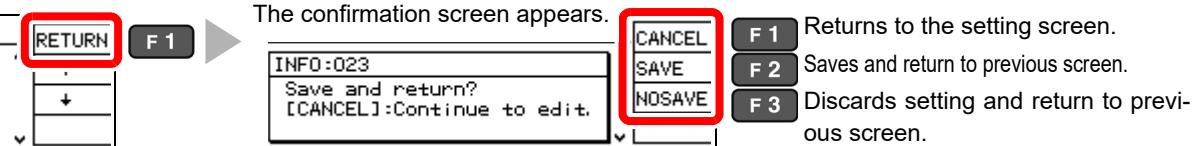
1 Open the Basic Settings screen.



2 Open the Measurement Settings Screen.


3

Set the Contact Improver current timing to disabled (OFF), enabled (ON), or PULSE.


(When selecting ON or PULSE)

Set the current limit value.

4

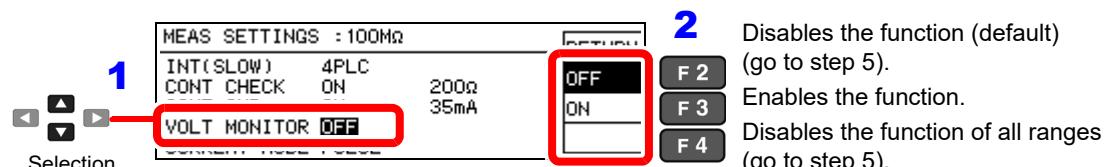
Return to the Measurement screen.

4.8 Detecting Measurement Voltage Faults (Voltage Level Monitor Function)

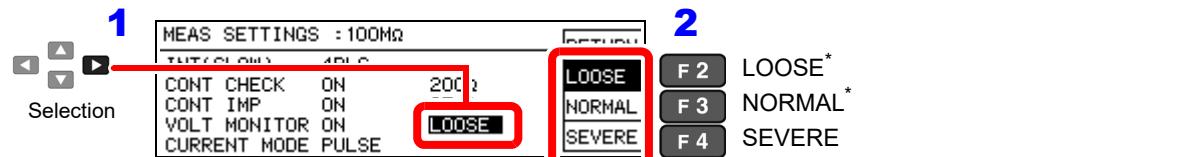
When a measurement voltage fault occurs due to probe chattering, the C.E. Volt error message appears on the measurement screen and an ERR signal is output. The C.E. Volt error may also appear when external noise is strong.


Check the following if errors occur frequently:

- Check for probe deterioration.
- Provide additional noise suppression."Appendix 3 Unstable Measurement Values" (p. A3)
- Set the voltage level monitor to Loose, or OFF (disable).


1 Open the Basic Settings screen.

2 Open the Measurement Settings Screen.



3 Enable or disable the function.

The setting is specific to the selected range (p. 47)

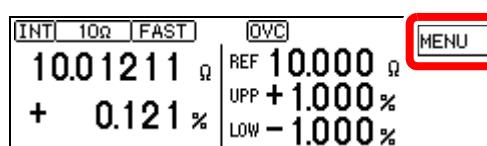
4 Select the voltage level monitor threshold.

*. Default setting: LOOSE is the default for the 100 MΩ range, and NORMAL for ranges other than 100 MΩ.

5 Return to the Measurement screen.

4.9 Applying Current Only When Measuring (Current Mode Setting)

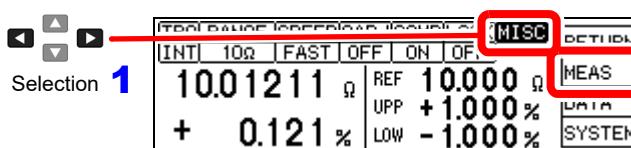
When the Contact Improvement function is set to Pulse or disabled (CONT IMP: PULSE or OFF) and measurement current is set for pulse output, open-circuit voltage when not measuring does not exceed 20 mV.


See: "4.7 Improving Probe Contact (Contact Improvement function)" (p. 57)

NOTE

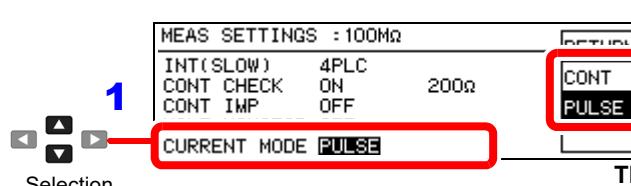
When the Contact Improvement function is enabled (CONT IMP: PULSE or ON setting), the current mode setting is ignored even if set to continuous (CURRENT MODE: CONT setting). (The Contact Improvement function forces pulse operation with measurement current applied only during measurement.)

4


1 Open the Basic Settings screen.

F 1

The Basic Settings screen appears.


2 Open the Measurement Settings Screen.

F 2

The Measurement Settings Screen appears.
[MEAS SETTINGS]

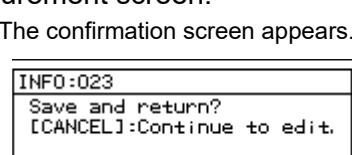
3 Select whether to apply current when not measuring.

F 2

Measurement current is applied while awaiting trigger.

F 3

Measurement current is applied only while measuring (default).


The setting is specific to the selected range (p. 47)

To apply measurement current continuously (CONT setting) even when waiting for a trigger, confirm that the Contact Improvement function is disabled (CONT IMP: OFF, (p. 57)).

4 Return to the Measurement screen.

F 1

CANCEL

SAVE

NOSAVE

F 1

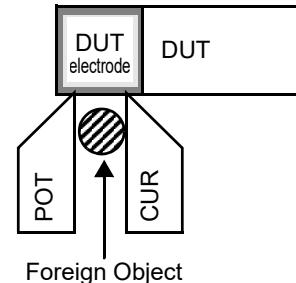
Returns to the setting screen.

F 2

Saves and return to previous screen.

F 3

Discards setting and return to previous screen.

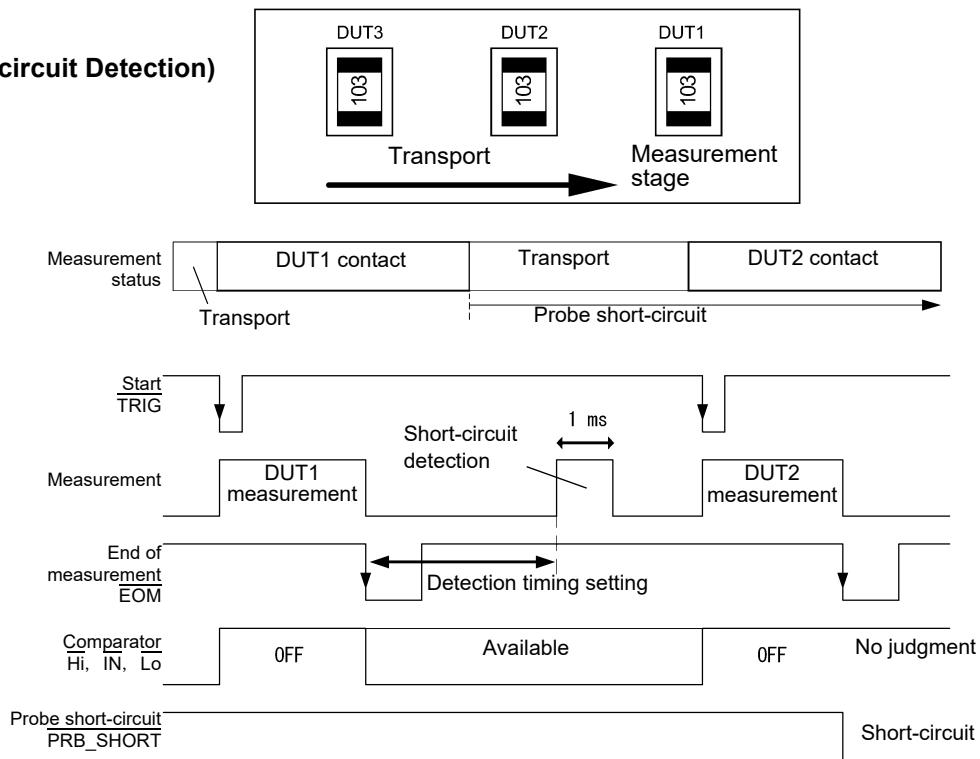

4.10 Test for Short-Circuited Probe (Probe Short-Circuit Detection Function)

Four-terminal measurements are not possible when a conductive foreign object is present between the POT and CUR probe tips. To detect short-circuited probes, this function measures the resistance between the CUR and POT terminals after a specific time (initially 5 ms) following the end of measurement.

Probe short-circuit detection is disabled by default.

When a probe short-circuit is detected, an error message appears on the measurement screen, and the PRB_SHORT and ERR signals are output.

([ERR:021 Probe short error](#))

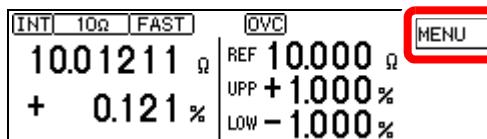


Short-circuit detection can also be controlled by asserting the active-low PRB_CHECK of the EXT. I/O signal. Asserting the PRB_CHECK signal while measuring causes short-circuit detection to be performed after the end of measurement (p. 107).

About Probe Short-Circuit Detection

- If probes are connected to the measuring object during probe short-circuit detection, it is determined as probe short circuit. Ensure that the probes have sufficient time to separate from the measuring object.
- Probe short-circuit detection occurs within about 1 ms.
- The threshold for probe short-circuit detection is fixed at 500Ω , so if the resistance between CUR and POT probes is larger, detection is not possible.

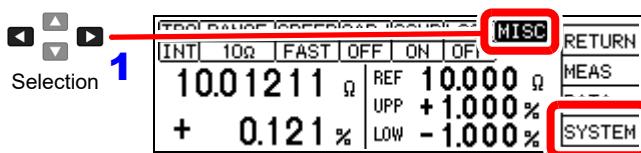
Timing chart
(Probe Short-circuit Detection)



NOTE

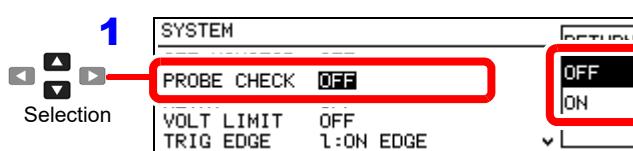
- Even while the probe short-circuit detection function is set to be disabled, short-circuit detection is performed when the EXT. I/O PRB_CHECK signal is asserted.
- When the internal trigger [TRG: INT] source is selected, short-circuit detection is not performed after the end of measurement. However, short-circuit detection can still be executed by asserting the PRB_CHECK signal is executed.

Enables/Disables Probe Short-Circuit Detection Function


1 Open the Basic Settings screen.

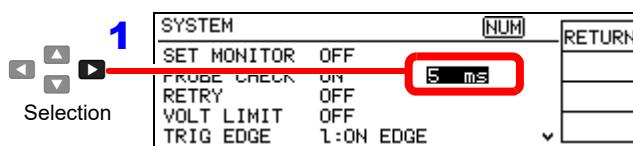
F 1

The Basic Settings screen appears.


2 Open the System screen.

2

The System screen appears.
[SYSTEM]

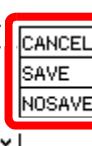
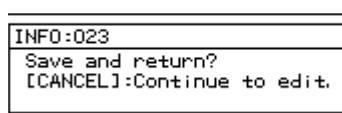

3 Enable or disable the function.

2

Probe short-circuit detection is not used
(default) (go to step 5).
Probe short-circuit detection is used.

4 Set the probe short-circuit detection timing.

Short-circuit detection is delayed for the specified time following the end of measurement.



2 **0** **9** Setting range: 1 to 100 ms, 5 ms (default)3 **ENTER**

5 Return to the Measurement screen.

F 1

The confirmation screen appears.

F 1

Returns to the setting screen.

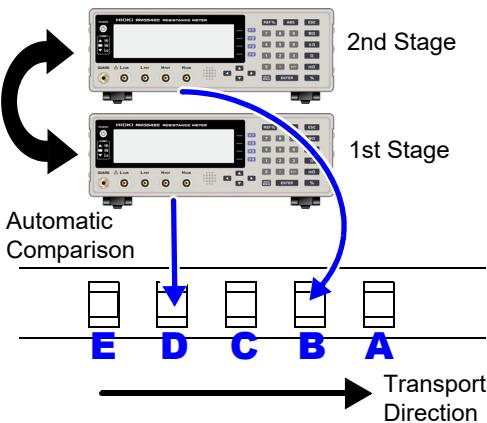
F 2

Saves and return to previous screen.

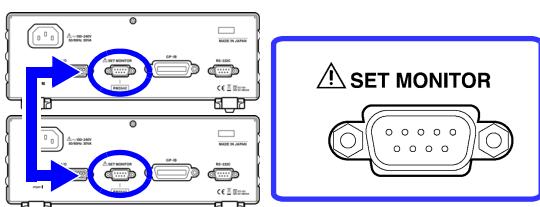
F 3

Discards setting and return to previous screen.

4.11 Comparing the Measurement Settings of Two Instruments (Settings Monitor Function)

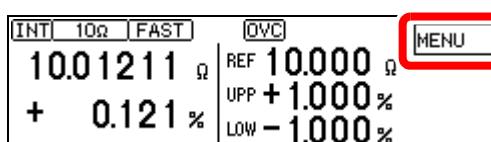

This function automatically compares the settings of two instruments to determine whether they are the same. Only comparator settings and measurement speed are compared.

When the settings differ, an alarm notification is displayed and subsequent.

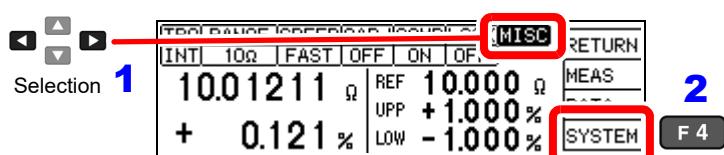

TRIG signal input is prevented from starting measurement.

When the settings of two instruments match, TRIG input is accepted and measurement starts.

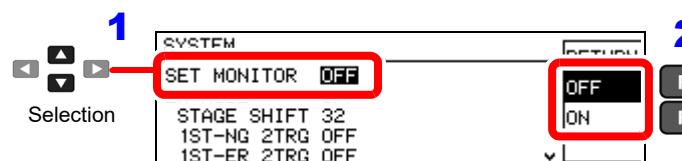
However, if the range defined by the upper and lower thresholds of the second stage is broader than that of the first stage, measurement still starts despite the different threshold settings.



1 Connect the SET MONITOR connectors of the two instruments using a Hioki 9637 RS-232C cable.

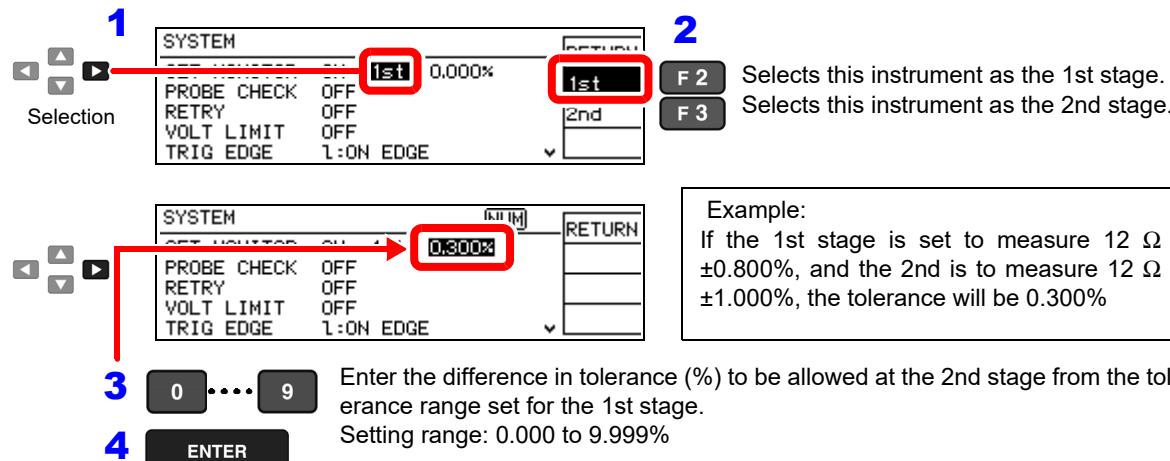

The SET MONITOR connectors are identical to RS-232C connectors.
Be careful to avoid connecting the wrong connectors.

2 Open the Basic Settings screen.


The Basic Settings screen appears.

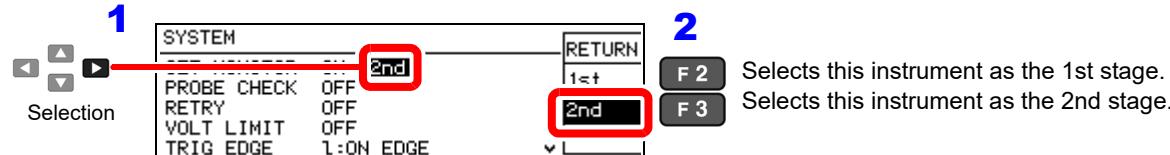
3 Open the System screen.

The System screen appears.
[SYSTEM]


4 Enable or disable the function. Enable the function on both instruments.

1 The setting is not monitored (default) (go to step 7).
2 The setting is monitored.

5


Select the instrument to serve as the 1st stage, and set its tolerance range.

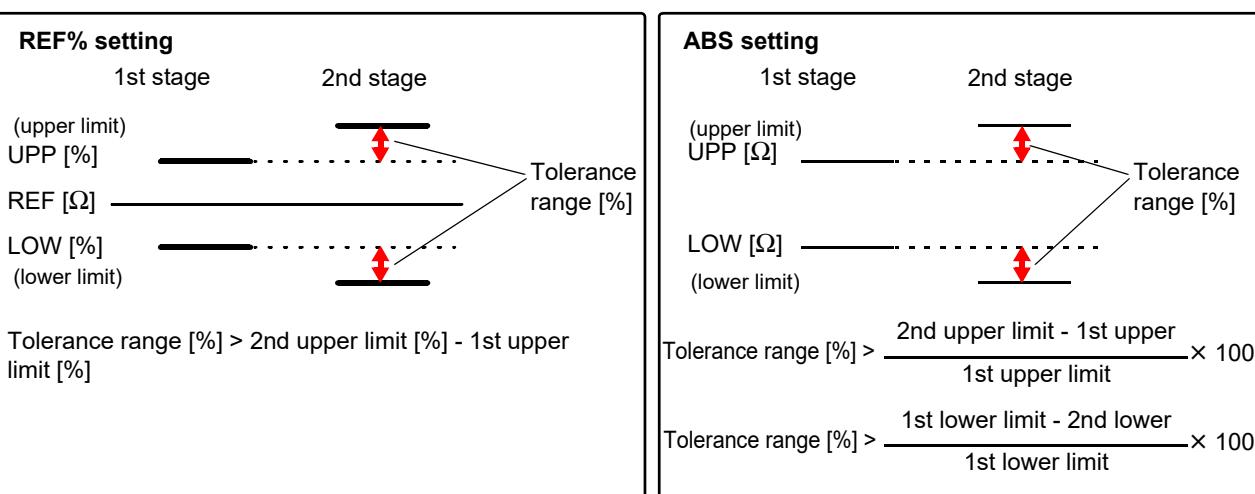
4


6

Set the instrument to serve as the 2nd stage.

7

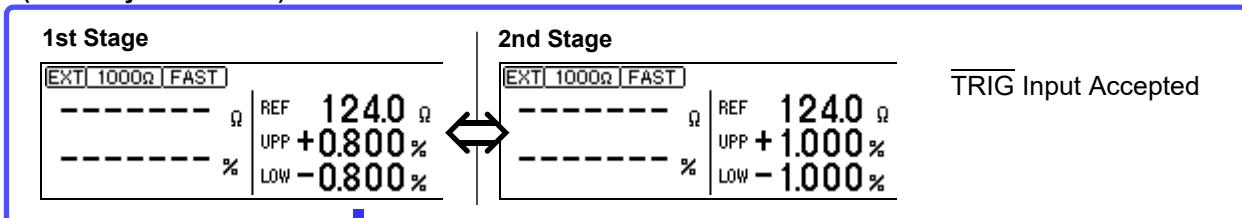
Return to the Measurement screen.

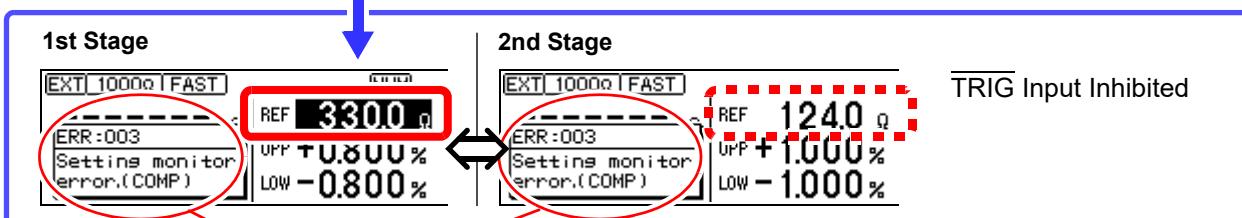

Tolerance Range Setting Conditions

Permissible tolerance is calculated using floating-point values, so the setting must be at least 0.001% larger than the difference between 2nd and 1st stage ranges.

Set the upper and lower comparator thresholds according to the following conditions:

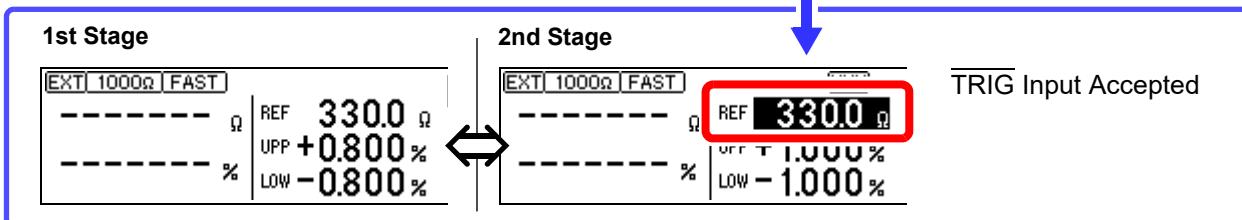
1st stage upper threshold < 2nd stage upper threshold


1st stage lower threshold > 2nd stage lower threshold


Practical Example

SET MONITOR: ON 1st 0.300%
(on the System screen)

SET MONITOR: ON 2nd (on the System screen)



When changing the reference value

The error message appears when
the settings do not match.

Change the reference value to match
the 1st stage

When an error is displayed

ERR:003

Setting monitor error. (COMP)

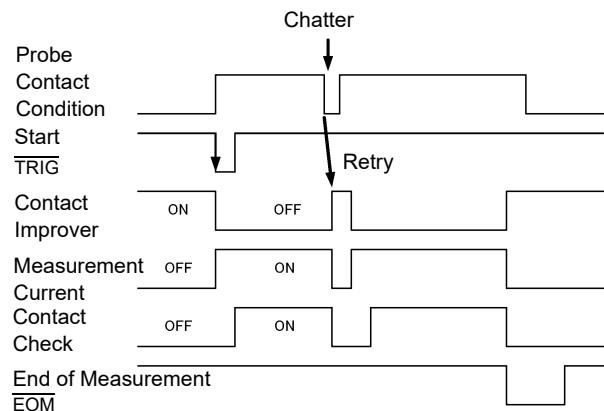
Comparator settings do not match. Please check.

ERR:004

Setting monitor error. (SPEED)

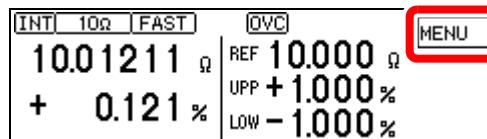
Measurement speed settings do not match. Please check.

4.12 Retrying Measurement After a Fault (Retry Function)


The Retry function enables measurement to be automatically retried when a measurement fault occurs due to probe chatter.

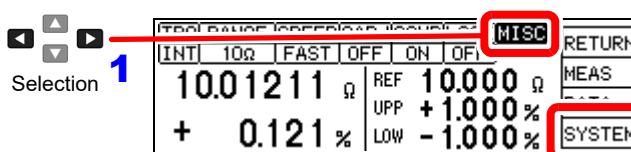
During Retry, all measurement operations including Contact Improvement and DELAY2 (but excluding DELAY1) are restarted.

If a measurement fault persists after the specified continuous retry interval (e.g., if the measured object is not connected), retrying is aborted and the EOM signal is output.


When Retry is enabled, the maximum time to end-of-measurement occurs when recovering from a measurement fault immediately before the retry interval expires, which approaches the sum of the retry interval setting plus normal measurement time.

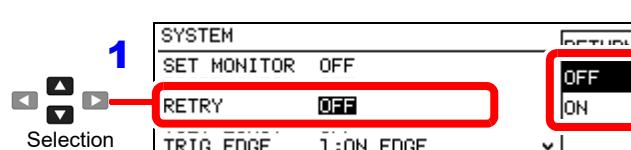
Decreasing test throughput may indicate probe maintenance is required.

4


1 Open the Basic Settings screen.

F 1

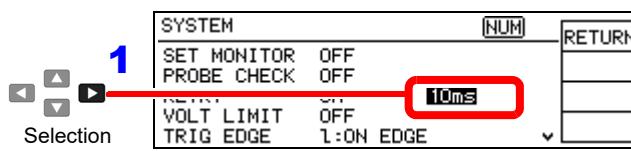
The Basic Settings screen appears.


2 Open the System screen.

F 4

The System screen appears.
[SYSTEM]

3 Enable or disable the function.

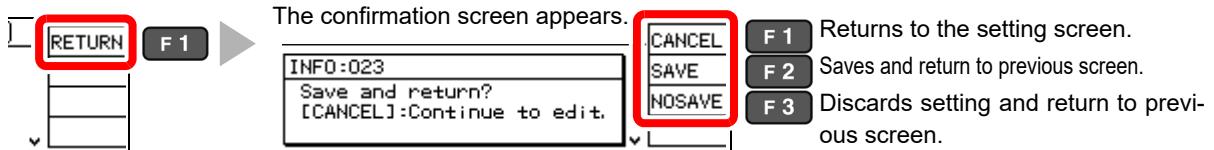

F 2

Retries disabled (go to step 5).

F 3

Retries enabled (default).

4 Set a continuous retry interval.

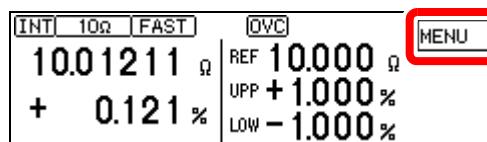


2 0 9 Setting range: 1 to 50 ms (default: 2 ms)

3 ENTER

5

Return to the Measurement screen.

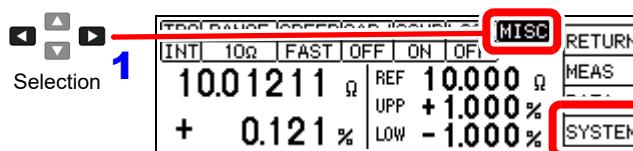


4.13 Limiting Measurement Voltage (Applied Voltage Limiter Function) (RM3542C-1, RM3542C-2 or RM3542C-3)

Applied voltage used for measurements can be limited to 5 V or lower.

When [ON] is selected, an adequate measurement range in which the "measured current × reference value or upper comparator threshold" (voltage) does not exceed 5 V will be automatically selected.

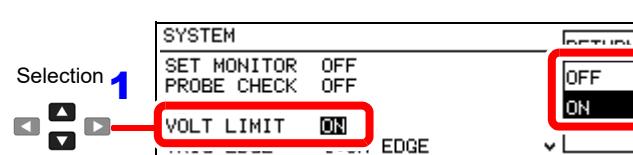
1 Open the Basic Settings screen.



F 1

The Basic Settings screen appears.

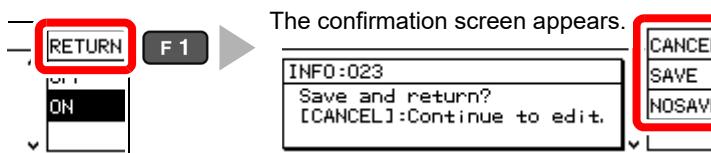
4


2 Open the System screen.

F 4

The System screen appears.
[SYSTEM]

3 Enable or disable the function.


F 2

Applied voltage is not limited(default).

F 3

Applied voltage is limited.

4 Return to the Measurement screen.

F 1

Returns to the setting screen.

F 2

Saves and return to previous screen.

F 3

Discards setting and return to previous screen.

NOTE

The instrument will display OvrRng (over range) when measuring a sample with applied voltage of 5 V or greater.

4.14 Maintaining Measurement Precision (Self-Calibration Function)

To maintain measurement precision, the instrument self-calibrates every ten minutes to compensate for internal circuit offset voltage and gain drift. This function cannot be disabled.

During self-calibration, the subsequent measurement is delayed for about 6 PLC + 10 ms (PLC = Power Line Cycles) for internal circuit compensation.

Self-Calibration Timing

Supplied power 50 Hz: 130 ms, 60 Hz: 110 ms

- When the timing of self-calibration overlaps with a measurement, self-calibration is postponed until the end of measurement.
- When a trigger signal (measurement start signal) is applied during self-calibration, the start of the triggered measurement is postponed until self-calibration is finished.
- Self-calibration executes automatically after changing comparator or measurement speed settings.
- During self-calibration, measurement current and the Contact Improver current are inhibited.

4.15 Compensating for Thermal EMF Offset (Offset Voltage Compensation - OVC)

This function automatically compensates for offset voltage resulting from thermal emf or internal instrument bias. (OVC: Offset Voltage Compensation)

See: "Appendix 2 Effect of Thermal emf" (p. A2)

The following value is known to be a true resistance value from $R_P (>0)$, the value measured with current flowing in the positive direction, and $R_N (<0)$, the value measured with current flowing in the negative direction.

$$\frac{R_P - R_N}{2}$$

Offset voltage compensation is automatically enabled in the following conditions, and cannot be modified or disabled:

- When a range from 10 mΩ to 10 Ω is selected.
- Low Power Resistance Measurement (LOW POWER ON)

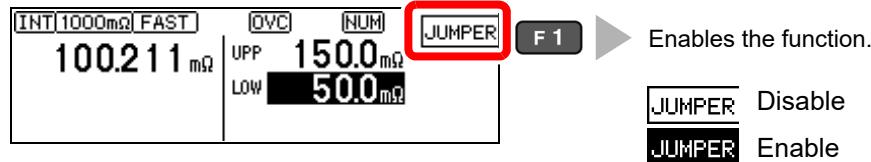
NOTE

When the test object is inductive, some delay [DELAY2] is required (p. 48) to allow adequate current flow before starting measurement.

4.16 Jumper Resistance Measurement Support Function (RM3542C-1, RM3542C-2 or RM3542C-3)

This function is intended to perform high-speed measurement of jumper resistors and other cases where high accuracy is not required. The instrument automatically selects the optimal measurement range. When the comparator function is enabled, the measurement range is automatically determined based on the comparator's upper limit value. However, since measurement times for ranges of 100 mΩ and less are longer than that for the 1000 mΩ range, enabling this function automatically restricts the range to 1000 mΩ or higher.

Enabling the jumper resistance measurement support function.


- 1 Enable the comparator function.

See: "Enabling and Disabling the Comparator Function" (p. 39)

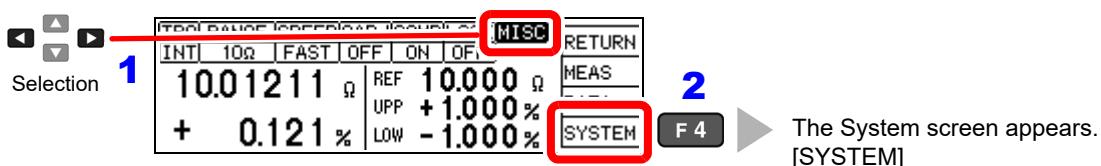
- 2 Enable ABS mode.

See: "Decide According to Upper/Lower Thresholds (ABS Mode)" (p. 42)

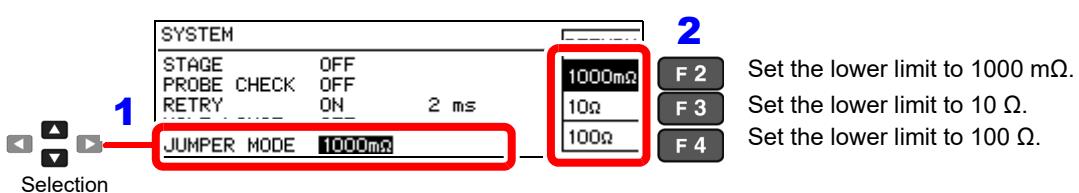
- 3 Enable the jumper resistance measurement support function.

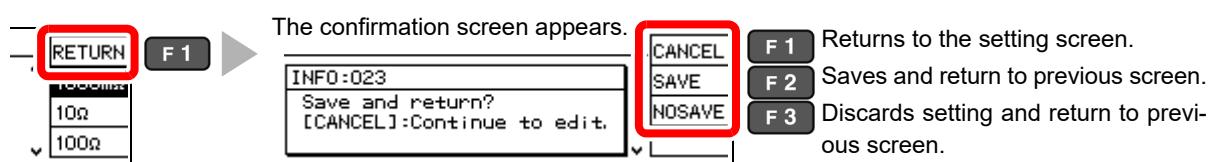


NOTE


When comparator settings are changed, the jumper resistance measurement support function is automatically disabled.

Setting the lower limit for the jumper resistance measurement support function.


1 Open the Basic Settings screen.


2 Open the System screen.

3 Set the lower limit value for the resistance measurement range.

4 Return to the Measurement screen.

4.17 ΔR Function (RM3542C-3)

Measurement values from two RM3542C-3 units can be linked for more precise testing. The first stage measurement value is sent to the second stage instrument. In the second stage, ΔR is calculated using the following equation and compared with a preset threshold.

$$\Delta R = \left(\frac{R_{2\text{nd}} - R_{1\text{st}}}{R_{\text{REF2nd}}} \right) \times 100[\%]$$

$R_{1\text{st}}$: First-stage measurement value

$R_{2\text{nd}}$: Second-stage measurement value

R_{REF2nd} : Second-stage comparator reference value

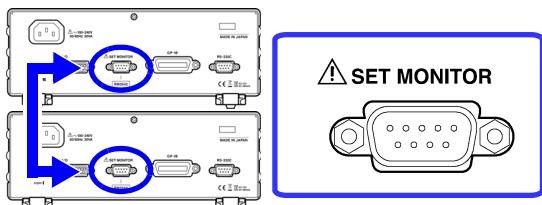
Threshold setting range:

0.0000% to 9.9999% (When 10% or less)

10.000% to 99.999% (When more than 10%)

4

Moreover, by calculating the average ΔR value, you can confirm the testing status for each lot. The average value, avΔR, is obtained using the following formula.

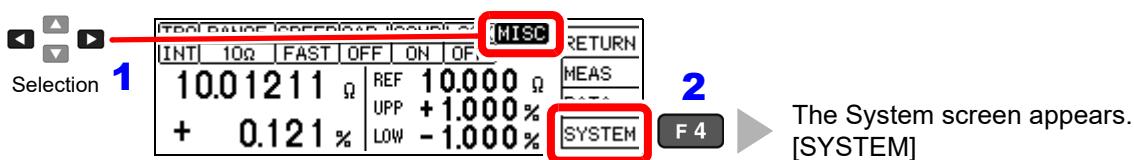

$$\text{av}\Delta R = 0.99 \times \text{av}\Delta R + 0.01 \times \Delta R$$

NOTE

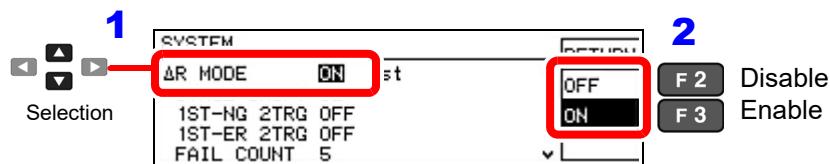
- The ΔR function is valid only when the comparator is set to REF% mode. It is invalid when set to ABS mode.
- For the first measurement, avΔR is calculated as $\text{av}\Delta R = \Delta R$.
- When the ΔR function is enabled, the printer cannot be used.
- When the ΔR function is enabled, the function of EXT. I/O pin 6 differs from normal operation.

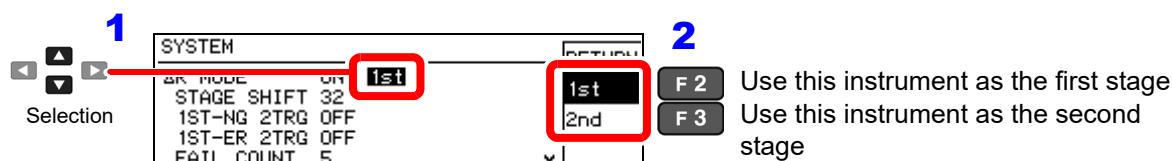
Configuring the ΔR function

1 Connect the SET MONITOR connector with a 9637 RS-232C cable.

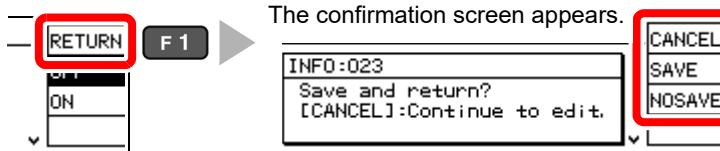


The SET MONITOR connector has the same shape as an RS-232C connector.
Take care not to connect to the wrong connector.


2 Open the Basic Settings screen.


3 Open the System screen.

4 Select whether to enable or disable the function. Both instruments must be configured.



5 Set the stage and operating method for the instrument.

Item	Setting	Description
ΔR MODE	ON / OFF, 1st / 2nd Default setting : OFF	Selects whether to enable or disable the ΔR function. Selects the measurement stage.
STAGE SHIFT	1 to 99 Default setting : 32	Sets the number of stages from the first to the second stage.
1ST-NG 2TRG	ON / OFF Default setting : OFF	ON: Select to perform second-stage testing regardless of the first-stage testing result. OFF: Select to skip second-stage testing if the first-stage testing result is a high or low judgment.
1ST-ER 2TRG	ON / OFF Default setting : OFF	ON: Select to perform second-stage testing regardless of the first-stage testing result. OFF: Select to skip second-stage testing if the first-stage testing result is an ERR judgment.
FAIL COUNT	1 to 99 Default setting : 5	Sets the number of FAIL judgments before automatic recovery is performed.

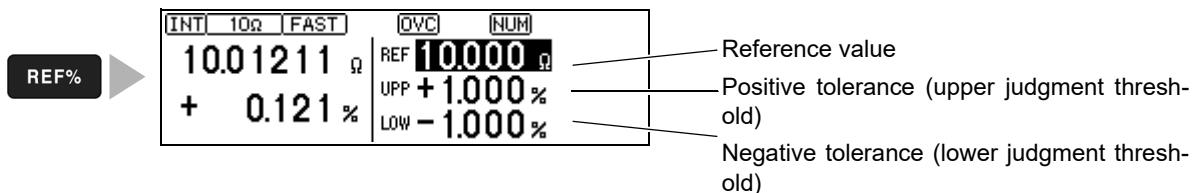
6 Return to the Measurement screen.

F 1 Returns to the setting screen.
F 2 Saves and return to previous screen.
F 3 Discards setting and return to previous screen.

Measurement screen when the first stage is selected

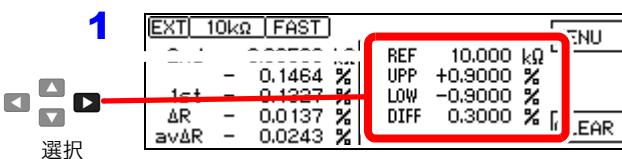
EXT 100Ω FAST		REF	0.00 Ω	MENU
---	---	MΩ	UPP +0.0000 %	
---	---	%	LOW +0.0000 %	ΔR 1st

Measurement screen when the second stage is selected


EXT 100Ω FAST		REF	0.00 Ω	MENU
2nd	-----	MΩ	UPP +0.0000 %	
-----	-----	%	LOW +0.0000 %	
1st	-----	%	DIFF 0.0000 %	
ΔR	-----	%		
avΔR	-----	%		CLEAR

4

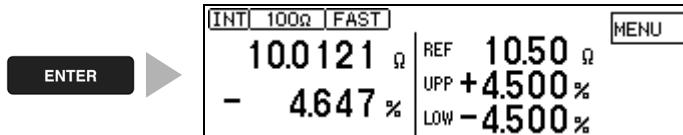
When the second stage is selected


Configures settings for the second stage.

1 Press the REF% key to open the judgment setting screen.

2 Configure the instrument to be used as the second stage.

In the second stage, both the normal comparison judgment and ΔR are judged.


2

REF: Reference value
UPP: Upper judgment threshold
LOW: Lower judgment threshold
DIFF: ΔR judgment criteria

NOTE

- Since floating-point calculations are used, judgment includes fractions too small to be included in the displayed digits.
- The displays of reference, upper limit, and lower limit values are rounded depending on the selected range. Internal data is not rounded, so judgment is made based on entered values.
- If the **ENTER** key is pressed when configured such that (upper limit < lower limit), the display will indicate an error.

3 Accept the settings and return to the Measurement screen.

Comparator judgment results

Signals are output from the EXT. I/O of the second stage based on the normal comparison judgment result and the ΔR judgment result, as shown in the table below.

ΔR function		Comparator judgment results				
		Hi	IN	Lo	(ERR)	
Enable	ΔR judgment result	Hi	HI	HI	LO	ERR
		IN	HI	IN	LO	ERR
		Lo	HI	LO	LO	ERR
		— *1	HI	ERR	LO	ERR
	Disable	—	HI	IN	LO	ERR

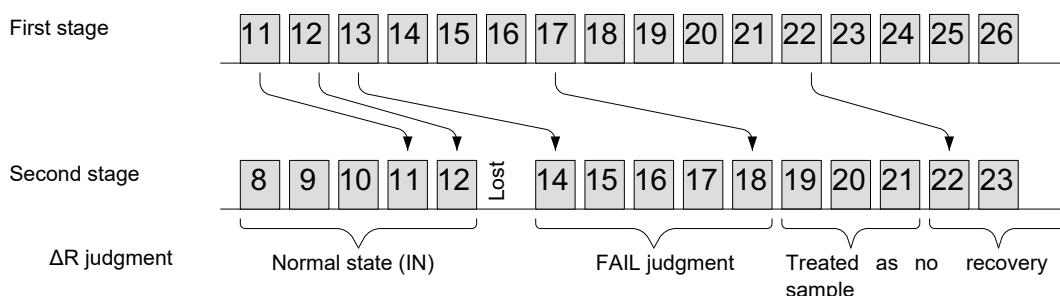
*1 When returning from an abnormal state

In the following abnormal states, the ΔR judgment result may not be output correctly:

- When there is no sample in the first stage
- When a sample judged IN in the first stage was not transported to the second stage
- When the testing system's sensor does not detect the sample
- When a valid trigger signal is not input
- When testing starts with a sample remaining between the first and second stages (for example in when the testing system's motor is in the free state)

There are two methods to recover from an abnormal state:

- Automatic recovery
- Manual recovery


NOTE

- When the ΔR function is enabled, the second-stage testing time will be 0.5 ms longer.
- Testing during the first and second stages must be carried out simultaneously within 2 ms. If synchronization cannot be achieved, the first-stage measured value will not be sent to the second-stage instrument.
- When the data output function is enabled, display updates will be slower, but there is no delay in external judgment output.

Recovery from an abnormal state

(1) Automatic recovery

If the ΔR judgment result is continuously FAIL (Hi or Lo), the system will determine that there is a synchronization abnormality between stages and automatically restart testing from the first stage. Samples are not inspected during automatic recovery, so they should be returned to the testing system's part feeder and re-tested.

*When the number of stages between the first and second stages is 3 and FAIL COUNT is set to 5

(2) Manual recovery

Delete the first-stage measured value retained by the second-stage instrument and restart testing from the first stage. Samples are not testing during recovery, so return them to the testing system's part feeder and re-test.

EXT	10k Ω	FAST	MENU
2nd	9.98536 k Ω	REF 10.000 k Ω	
-	0.1464 %	UPP +0.9000 %	
1st	- 0.1327 %	LOW -0.9000 %	
ΔR	- 0.0137 %	DIFF 0.3000 %	CLEAR
av ΔR	- 0.0243 %		

CLEAR: Delete the measured value.

The measured value retained in the second stage can also be deleted by the following methods.

- Send the **:SYSTem:DELT:CLEar** command.
- Change the instrument settings.
- Cycle the power.

4

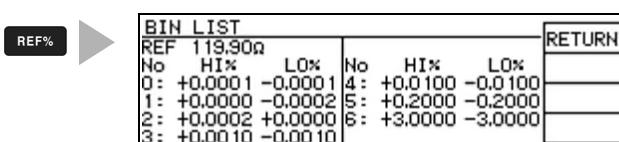
EXT.I/O

When the ΔR function is enabled, pin functions change as described below.

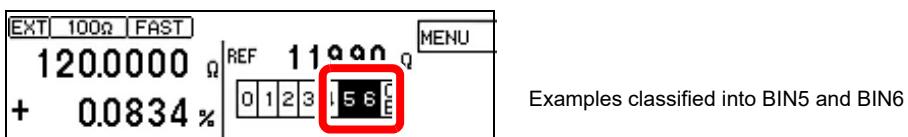
6 pin:CLR_DATA

When the CLR_DATA signal is at low level (ON), the first-stage measured value retained in the second stage is cleared.

4.18 BIN Measurement Function (RM3542C-3)


Bin measurement compares one measurement against the upper and lower limits of up to seven sets (BIN0 to BIN6) and displays the measurement result. Samples that do not fall into any bin are judged as OB ("out of bin"). Comparison results are also output from EXT. I/O.

1 Select the BIN for the comparator function.



2 Set bin measurement conditions via communications commands. (p. 183)

3 Press the REF% key to confirm the upper and lower limits for bin measurement.

4 Display BIN measurement results on the basic settings screen.

BIN number and corresponding usable patterns

To set which BIN numbers to use, configure the sum of the bit values corresponding to each BIN number. Table 1 shows these relationships. For example, to use BIN0 through BIN2, set :CALCulate:BIN:ENABLE 7.

Table 1 Bin number and bit correspondence

BIN6	BIN5	BIN4	BIN3	BIN2	BIN1	BIN0
bit6	bit5	bit4	bit3	bit2	bit1	bit0
64	32	16	8	4	2	1

BIN measurement judgment result and bin number correspondence

BIN measurement judgment results can be obtained as the sum of the bit values corresponding to each BIN number. For example, if the response to :CALCulate:BIN:RESUlt? is 18, that would indicate classification into BIN4 and BIN1. For OB, the response to :CALCulate:BIN:RESUlt? is 128.

NOTE

- Can only be used when set to REF% mode. Cannot be used when set to ABS mode.
- Settings can only be changed via communications control.(p. 183)
- Settings are initialized when the instrument power is cycled.
- When the BIN measurement function is enabled, the comparator function is automatically disabled.
- When the ΔR function is enabled, the BIN measurement function is automatically disabled.
- When the auto memory function is enabled, only the count value is valid.
- When the statistical calculation function is enabled, measurement values are not used for process capability index calculations.

System Settings Chapter 5

5.1 Disabling and Enabling Key Operations

Disabling Key Operations (Key-Lock Function)

Activate the key-lock function to disable the instrument's front panel key operations. Three key-lock levels are available to suit specific purposes.

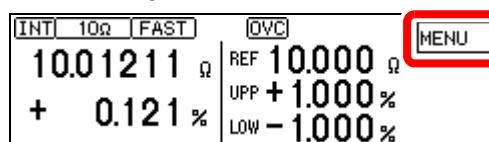
Only comparator settings are enabled.

Key operations to change settings are disabled.
(although key-lock can be canceled)

All key operations are disabled.

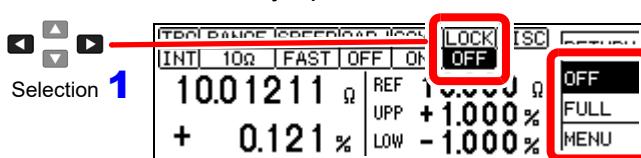
Disabling All Except Comparator Settings

Key operations other than comparator settings (REF%, ABS, units and numeric keys) and F1 [UNLOCK] keys are disabled.
To disable key operations: [M.LOCK] is displayed when returning to the [MENU] measurement screen.


Disabling All Key Operations Including Comparator

All key operations except F1 [UNLOCK] are disabled.
To disable key operations: [F.LOCK] is displayed when returning to the [FULL] measurement screen.

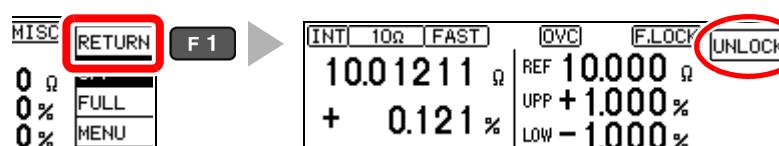
Disabling All Panel Keys


Asserting (Low) the EXT. I/O KEY_LOCK signal disables all panel keys, including F1 [UNLOCK] and F1 [LOCAL] (disables remote control) (p. 107).
To disable the key-lock function and re-enable the keys, de-assert (High) the KEY_LOCK signal.

1 Open the Basic Settings screen.

The Basic Settings screen appears.

2 Enable or disable key operations.

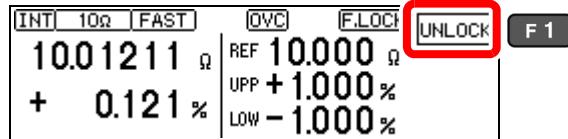

2

Key operations enabled (default).

Disables all except key-lock cancel.

Disables all except key-lock cancel and comparator setting change.

3 Return to the Measurement screen.


[UNLOCK] is displayed only when key-lock is enabled by front panel key operations.

5.1 Disabling and Enabling Key Operations

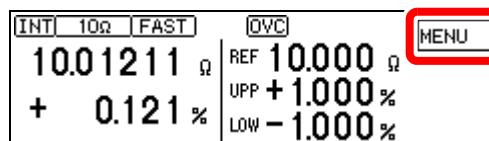
Re-Enabling Key Operations (Key-Lock Cancel)

Key-lock can be canceled only when [UNLOCK] is displayed.

Press and hold **F1** [UNLOCK] for one second.

NOTE

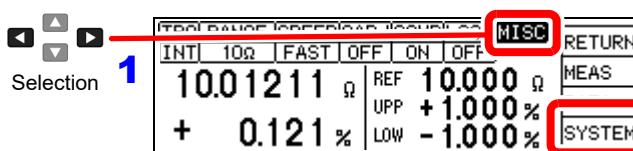
If key operations are disabled by the `KEY_LOCK` signal, de-assert (High) the signal to unlock the keys.


5.2 Setting the Comparator Judgment and Key Beepers

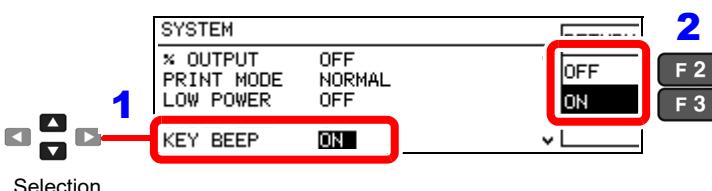
Enabling or Disabling the Key Beeper

The key beeper sound can be enabled and disabled.

The key beeper is enabled (ON) by default.


1 Open the Basic Settings screen.

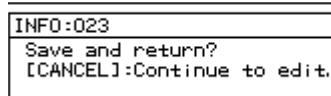
The Basic Settings screen appears.


5

2 Open the System screen.


The System screen appears.
[SYSTEM]

3 Select whether to enable or disable the key beeper.



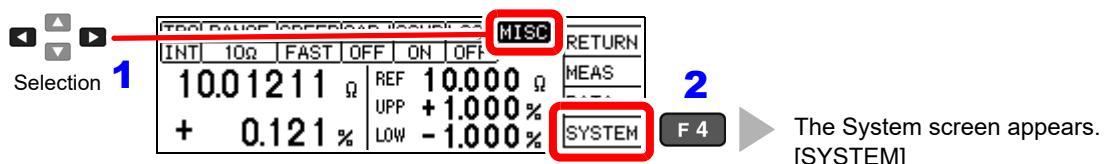
2
Disables the beeper.
Enables the beeper (default).

4 Return to the Measurement screen.

The confirmation screen appears.

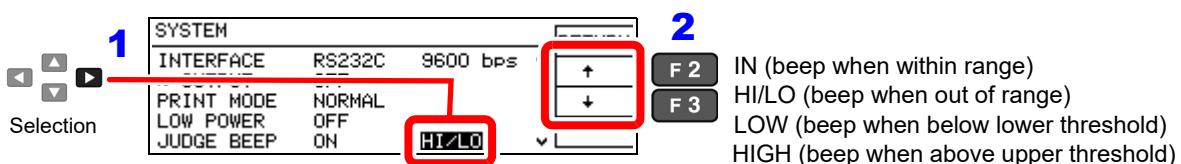
F 1 Returns to the setting screen.
F 2 Saves setting and return to previous screen.
F 3 Discards setting and return to previous screen.

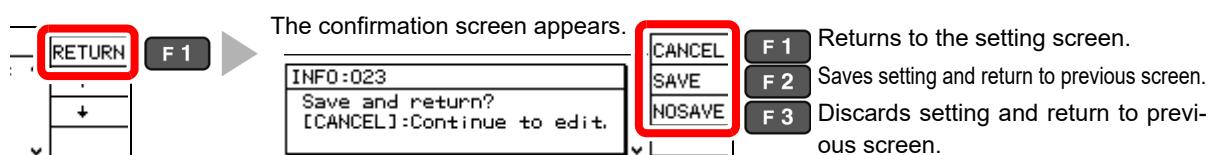
5.2 Setting the Comparator Judgment and Key beepers


Setting the Comparator Judgment Beeper

The comparator judgment beeper can be enabled and disabled.
The judgment beeper is disabled (OFF) by default.

1 Open the Basic Settings screen.


2 Open the System screen.


3 Select whether to enable or disable the judgment beeper.

4 Select the judgment beep conditions.

5 Return to the Measurement screen.

5.3 Power Line Frequency Manual Setting

For proper electrical noise suppression, the instrument needs to be set to match the power line frequency.

With the default setting (AUTO), the instrument attempts to automatically detect the line frequency, but manual setting is also available.

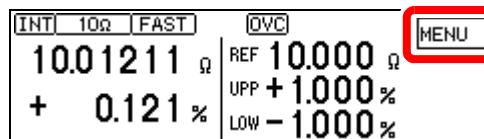
Unless the line frequency is set correctly, measurement values may be unstable.

An error message appears if line noise is high enough to prevent correct frequency detection (ERR:041 (p. 223)). In that case, set the instrument's line frequency manually.

NOTE

When the [AUTO] setting is selected, the line frequency is automatically set to 50 or 60 Hz when the instrument is turned on or reset.

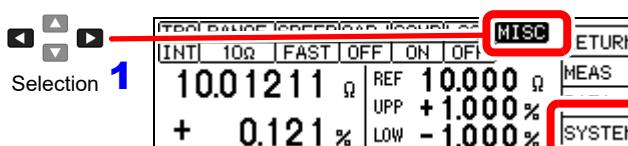
However, automatic detection is not available when the line frequency changes after turning power on or resetting.


If the actual line frequency deviates from 50 or 60 Hz, it is set to one of the closest frequencies.

Examples: If the actual line frequency is 50.8 Hz, select the 50 Hz setting.

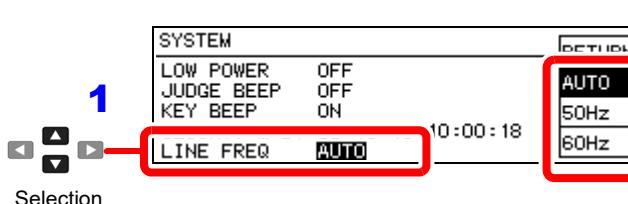
If the actual line frequency is 59.3 Hz, select the 60 Hz setting.

5


1 Open the Basic Settings screen.

F 1

The Basic Settings screen appears.


2 Open the System screen.

F 4

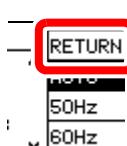
The System screen appears.
[SYSTEM]

3 Select the line frequency to be used.

2

Automatically detect local line frequency (default).

F 2


When the line frequency is 50 Hz.

F 3

When the line frequency is 60 Hz.

F 4

4 Return to the Measurement screen.

F 1

The confirmation screen appears.

F 1

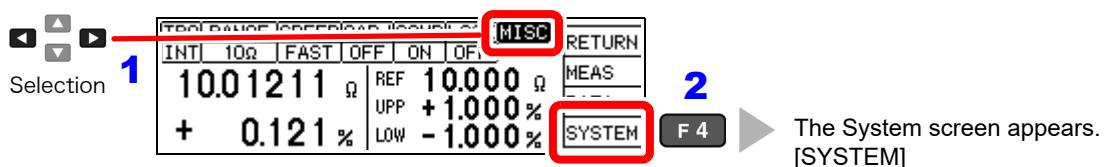
Returns to the setting screen.

F 2

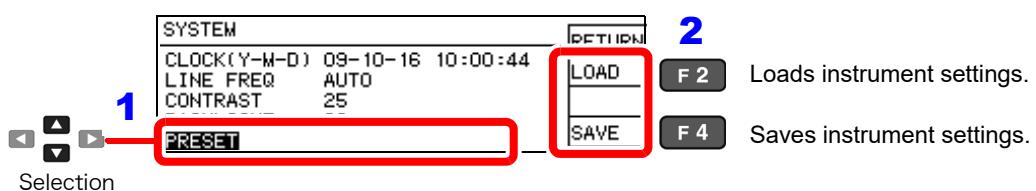
Saves setting and return to previous screen.

F 3

Discards setting and return to previous screen.

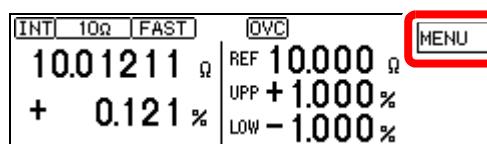

5.4 Preset Function (RM3542C-1, RM3542C-2 or RM3542C-3)

This section describes how to save and load instrument settings.

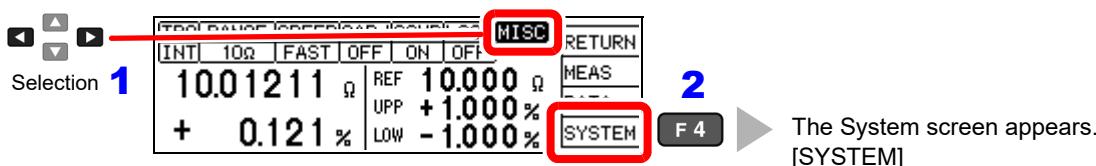

1 Open the Basic Settings screen.

2 Open the System screen.

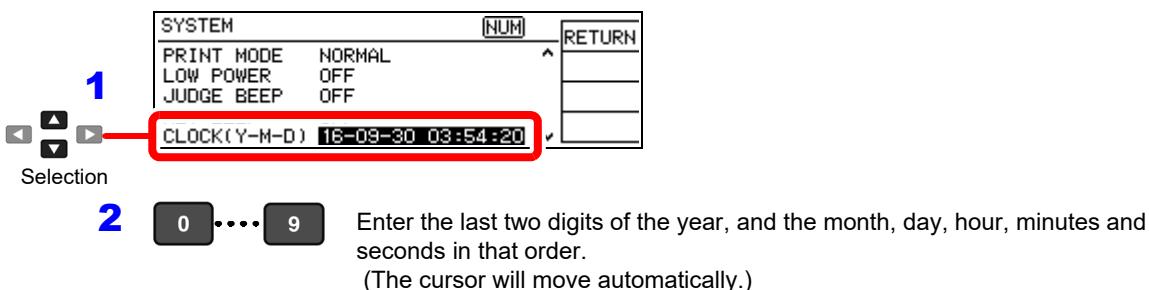
3 Save or load instrument settings.

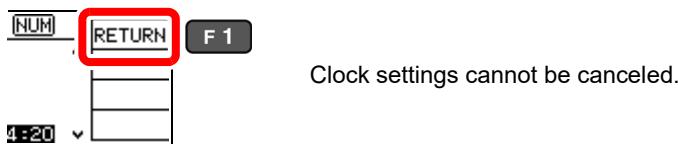


5.5 Setting the Clock


To record and print the correct time when using statistical calculations (p. 96), the clock needs to be set correctly.

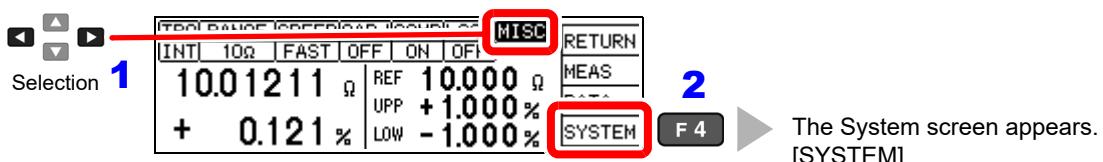
The time of printing is also output when printing statistical calculation results.


1 Open the Basic Settings screen.

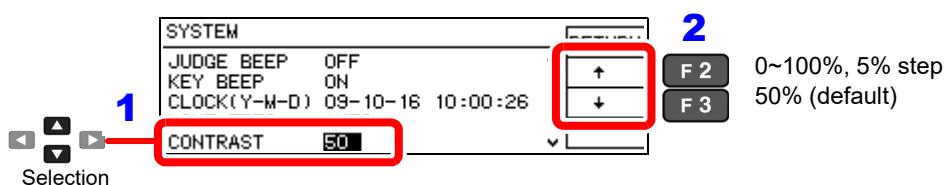

2 Open the System screen.

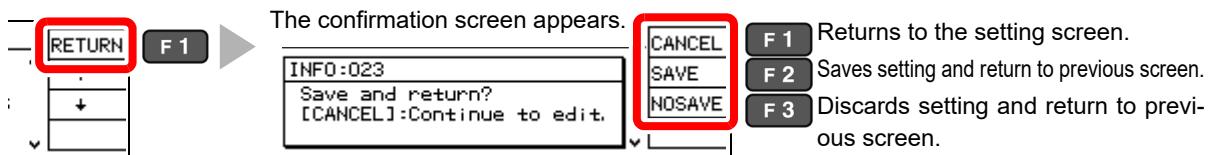
3 Set the date and time.

4 Return to the Measurement screen.


5.6 Adjusting Screen Contrast

The screen may become hard to see when ambient temperature changes. In this case, adjust the contrast.


1 Open the Basic Settings screen.

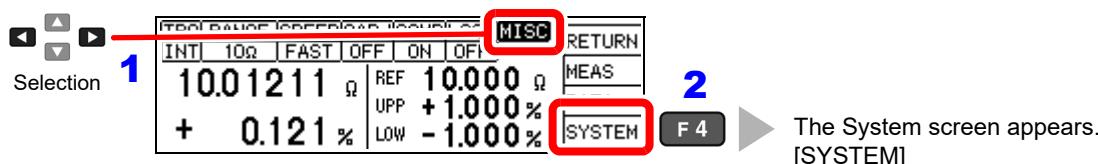

2 Open the System screen.

3 Adjust the contrast.

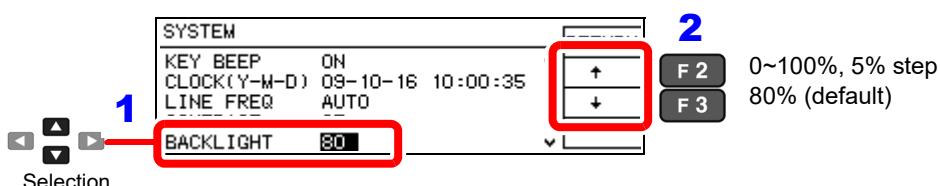
4 Return to the Measurement screen.

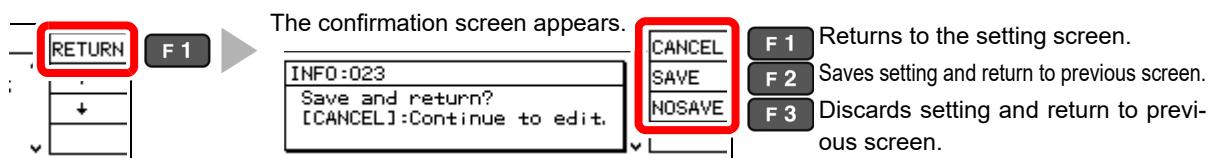
5.7 Adjusting the Backlight

Adjust backlight brightness to suit ambient illumination.


NOTE

- When external triggering [TRG: EXT] is selected, backlight brightness is automatically reduced after non-operation for one minute.
- Be aware that the display may be hard to see when brightness is set too low (near 0%).


1 Open the Basic Settings screen.

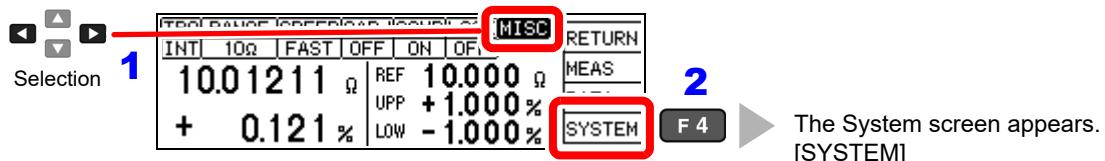

2 Open the System screen.

3 Adjust the backlight.

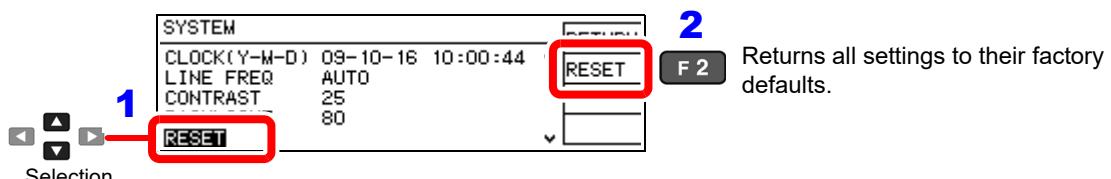
4 Return to the Measurement screen.

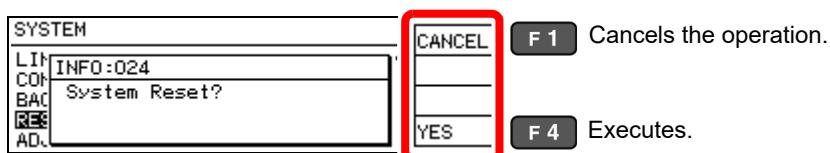
5.8 Initializing (Reset)

The instrument can be reset by following three methods.


- System reset from the System screen: Returns all settings (except the clock) to factory defaults.
- Turn the instrument on while simultaneously holding the REF% and ABS keys: Returns all settings (except the clock) to factory defaults.
- Reset by remote control command: returns all settings (except communication and clock settings) to their factory defaults.
 - ***RST** command (non-backup) (p. 152)
 - **:SYSTem:RESet** command (p. 168)

This procedure describes system reset from the System screen.


1 Open the Basic Settings screen.


2 Open the System screen.

3 Select RESET.

4 Select whether to cancel or proceed to execute system reset.

The Measurement screen is displayed when system reset finishes.

Default Settings

Display		Setting value	Default value	Settings
MENU	TRG	INT/ EXT/ MANU	EXT	Trigger setting function (p. 33)
	RANGE	↑/ ↓ [When low-power resistance measurement is set to OFF] 100 mΩ/ 1000 mΩ/ 3 Ω/ 10 Ω/ 100 Ω/ 300 Ω/ 1000 Ω/ 10 kΩ/ 30 kΩ/ 100 kΩ/ 300 kΩ/ 1000 kΩ/ 3 MΩ/ 10 MΩ/ 30 MΩ/ 100 MΩ (default) [When low-power resistance measurement is set to ON] 1000 mΩ/ 3 Ω/ 10 Ω/ 100 Ω/ 300 Ω/ 1000 Ω	100 MΩ	Range switching function (p. 34)
	SPEED	SLOW/ MED/ FAST	FAST	Measurement speed (p. 31)
	0ADJ	OFF/ ON	OFF	Zero adjustment function (p. 36)
	COMP	OFF/ ON	ON	Comparator function (p. 38)
	LOCK	OFF/ FULL / MENU	OFF	Key-Lock function (p. 79)
MISC		MEAS/ DATA/ SYSTEM		(Miscellaneous settings)
MEAS				
MEAS	DELAY1	0 to 100 ms (all ranges)	0 ms	Probe delay setting (p. 48)
	DELAY2	0 to 100 ms	0 ms	DUT response setting (p. 48)
	SCALING	OFF/ON Coefficient A Offset B	OFF A:1 B:0	Scaling function (p. 50)
	INT (FAST)	0.1 ms to 100 ms	Depends on measurement range	Integration time (p. 52)
	INT (MED)	1PLC to 6PLC (60 Hz)		
	INT (SLOW)	1PLC to 5PLC (50 Hz)		
	AVERAGE	OFF/ ON	OFF, 16 Times	Average function (p. 54)
	CONT CHECK	OFF/ ON	ON, 200 Ω	Contact check (p. 55)
		50 Ω/ 100 Ω/ 150 Ω/ 200 Ω/ 300 Ω/ 400 Ω/ 500 Ω		
	CONT IMP	OFF/ ON/ PULSE 17 mA/ 25 mA/ 35 mA/ 50 mA	ON, 35 mA (ranges from 100 mΩ to 100 kΩ) PULSE, 35 mA (ranges from 300 kΩ to 100 MΩ)	Contact Improvement (p. 57)
VOLT MONITOR	OFF/ ON/ ALLOFF		ON, NORMAL (LOOSE when 100 MΩ range) (RM3542C-1, RM3542C-2 or RM3542C-3)	Voltage Monitor Function (p. 60)
	LOOSE/ NORMAL/ SEVERE	OFF, NORMAL (LOOSE when 100 MΩ range) (RM3542C-4, RM3542C-5)		
	CURRENT MODE	CONT/ PULSE	PULSE	Current mode setting function (p. 61)
DATA	AUTO MEMORY	OFF/ ON	OFF	Auto-Memory function (p. 93)
	STATISTICS	OFF/ ON	OFF	Statistical calculation function (p. 96)
	DATA OUT	OFF/ ON	OFF	Data output function (p. 99)

5.8 Initializing (Reset)

Display		Setting value	Default value	Settings
SYSTEM	SET MONITOR	OFF/ ON, 1st/ 2nd, 0.000% to 9.999%	OFF, 1st, 0.000%	Settings Monitor function (p. 64)
	ΔR MODE	OFF/ ON, 1st/ 2nd	OFF, 1st, 32, OFF, OFF, 5	ΔR Function (p. 73)
	PROBE CHECK	OFF/ ON, 0 to 100 ms	OFF, 5 ms	Probe short-circuit detection function (p. 62)
	RETRY	OFF/ ON, 1 to 50 ms	ON, 2 ms	Retry function (p. 67)
	VOLT LIMIT	OFF/ ON	OFF	Applied Voltage Limiter Function (p. 69)
	JUMPER MODE	OFF/ ON, 1000 mΩ/10 Ω/100 Ω	OFF, 1000 mΩ	Jumper resistance measurement support function (p. 71)
	TRIG EDGE	OFF EDGE/ ON EDGE	ON EDGE	Start Logic Setting (p. 119)
	EOM	PULSE/ HOLD 1 to 100 ms	PULSE, 5 ms	End-of-measurement pulse width (p. 118)
	INTERFACE	GP-IB/ RS232C/ PRINT	RS232C, 9600bps GP-IB, ADR01, LF	Interface setting (p. 127)
	% OUTPUT	OFF/ ON	OFF	Percentage Output Function (p. 100)
	PRINT MODE	NORMAL/ SAMPLE, 1 to 100, ALL/ IN, 1/L/ 3/L	NORMAL, 100, ALL, 3/L	Set printing method (p. 103)
	LOW POWER	OFF/ ON	OFF	Low-Power Resistance Measurement (p. 30)
	JUDGE BEEP	OFF/ ON OFF/ IN/ HI/LO/ LOW/ HIGH	OFF, HI/LO	Comparator judgment beeper (p. 82)
	KEY BEEP	OFF/ ON	ON	Key beeper (p. 81)
	CLOCK			Clock setting (p. 85)
	LINE FREQ	AUTO/ 50 Hz/ 60 Hz	AUTO	Line frequency (detection) setting (p. 83)
	CONTRAST	0 ~100	50	Screen contrast adjustment (p. 86)
	BACK LIGHT	0 ~100	80	Screen backlight adjustment (p. 87)
	RESET	-	-	Reset (p. 88)
	ADJUST	-	-	Adjustment screen (p. A13)

Storing and Exporting Data

Chapter 6

Measurement values can be stored or automatically exported, according to application. Stored data can be output to a printer, RS-232C or GP-IB. Also, statistical calculations can be applied to internally stored data.

**Stored measurement data are lost when the instrument is turned off.
Therefore, be sure to print out or export important data to a PC.**

Store measurement values at specified timing.

This is convenient for batch exporting data to a controller while switching reels.

Data Memory Function (p. 92)

Stores up to 30,000 measurement data using the EXT. I/O TRIG signal or by pressing the F4 [MANU] key on the Basic Settings screen.

Store data after measurement value has stabilized.

This is convenient for sample inspection after printing (vapor deposition) resistors on a board.

Auto-Memory Function (p. 93)

Measurement values are automatically stored as they become stable.
When the specified number of data points (up to 99) is acquired, the beeper sounds and auto-storing halts.

Automatically output (export) measurements at the end of measurement.

Data Output Function (p. 99)

Minimizes transfer time by eliminating the need for transmit requests from the remote controller.
(RS-232C interface only)

6.1 Storing Data at Specified Timing (Data Memory Function)

Measurement values are stored in the instrument's internal memory at the following timings (up to 30,000 points).

- All measurements performed by external (EXT) triggering
- When a trigger is applied during internally (INT) triggered measurement

The following three storage methods are available:

- Stores when an EXT. I/O **TRIG** signal is received (p. 107)
- Stores when a ***TRG** command is received (p. 155)
- Stores when the F4 [MANU] key on the [MENU] - [TRG] setting screen is pressed.

NOTE

- This function can only be enabled by remote control. The data memory function should be enabled by remote command beforehand. This setting is not available on the front panel.
- Stored memory data cannot be viewed on the instrument's screen. Use remote control commands to export stored data.
- When the percentage output function (p. 100) is enabled, data that can be acquired using commands takes the form of relative values.

Data Memory Function Operating Procedure

1 Enable data memory mode.

Send this remote command to enable the data memory function:
:MEMORY:MODE MEMORY (p. 173)

2 Store measurement values.

Execute external trigger measurement, or apply a trigger during internally triggered measurement.

3 Export the stored data.

Send this remote command to export the measurement values stored in the instrument:
:MEMORY:DATA? (p. 174)

4 Clear measurement data from instrument memory.

Send this remote command to erase the data from instrument memory:
:MEMORY:CLEar (p. 173)

Moreover, stored data is automatically erased at the following timings:

- When the memory function setting (including auto-mem-
ory) is changed (p. 173)
- When the range is changed (p. 34)
- When changing comparator settings (p. 38)
- When printing the statistical calculations (p. 105)
- When the measuring object is changed (p. 30)
- When system reset (p. 88)

6.2 Store as soon as Measurement is Stable (Auto-Memory Function)

This function automatically stores the measurement value each time the probes contact the sample with internal triggering.

When the specified number of values have been acquired, auto-storage operation stops.

Statistical calculations are applied to the stored data, with results output to the screen or printer (RS-232C).

See: "6.3 Performing Statistical Calculations on Measurement Values" (p. 96)

"Chapter 7 Printing" (p. 101)

Data storage and printing can be automatically controlled by the Auto-Memory function.

Prepare the printer (p. 101).
Enable Auto-Memory and set the number of values to store.

Setting judgment criteria. (p. 38)

Measure

Printing (p. 105)

Beeper notifies when the specified number of values are stored.

The Auto-Memory function is disabled by default.

Enable the Auto-Memory function before setting the number of values to store.

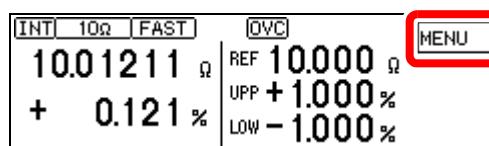
Enabling the Auto-Memory function affects other functions as follows:

- Statistical calculation is forcibly turned on.
- The voltage level monitor function is forcibly turned off (the setting itself is not set to OFF, but the function is disabled).
- The trigger source setting is forcibly turned to internal [TRG: INT].

NOTE

When the trigger source is set to external [TRG: EXT], the Auto-Memory function is forcibly disabled.

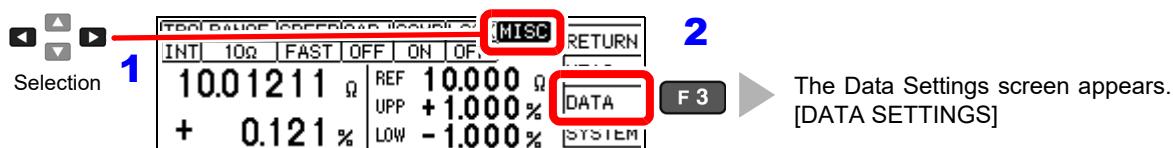
Deleting Stored Data

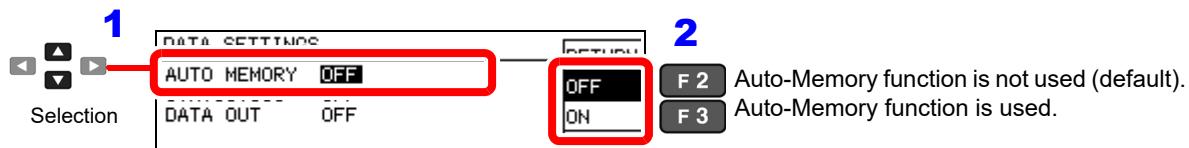

Stored data is automatically erased at the following timings:

- When the memory function setting (including data-memory) is changed (p. 173)
- When the range is changed (p. 34)
- When changing comparator settings (p. 38)
- When the power is turned off
- When printing (p. 105)
- When the measuring object is changed (p. 30)
- When system reset (p. 88)
- When setting the auto-memory number of values to store (p. 94)

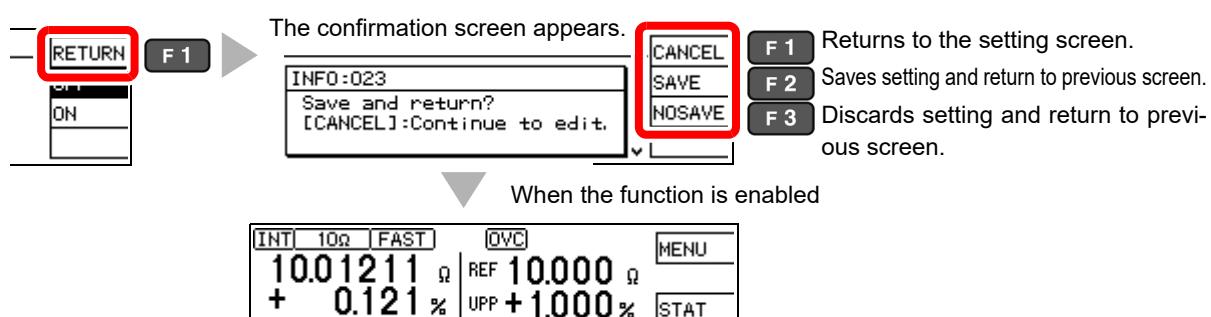
Enabling the Auto-Memory Function

1

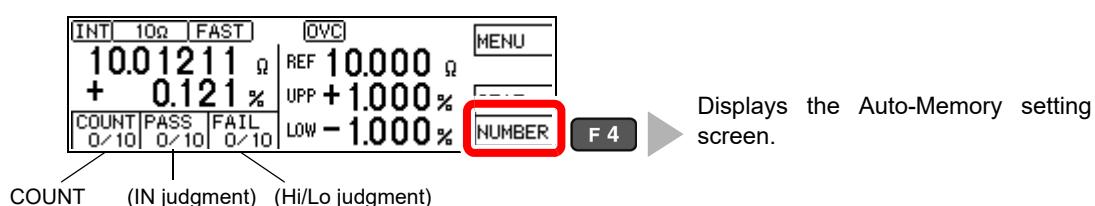

Open the Basic Settings screen.


F1

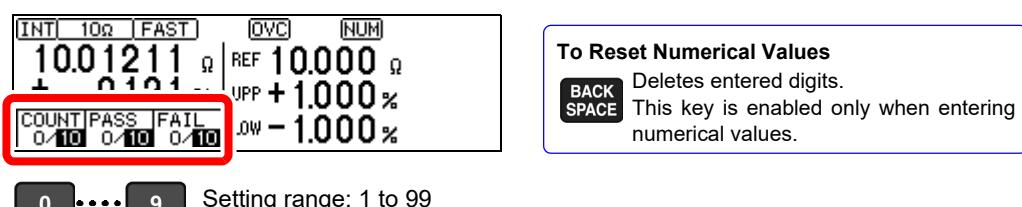
The Basic Settings screen appears.


2 Open the Data Memory Settings screen.

3 Enable or disable the function.

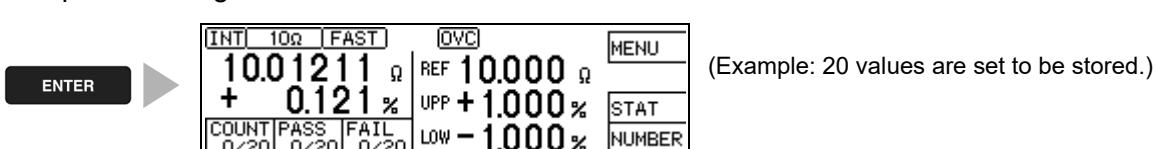


4 Return to the Measurement screen.



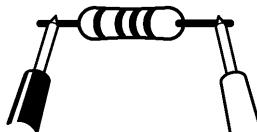
Setting the Number of Values to Store

1 Open the Auto-Memory Settings screen.



2 Enter the number of values to store.

To abort the setting process, press **ESC**. Settings are abandoned and the display returns to the previous screen.


3 Accept the settings and return to the Measurement screen.

Acquiring Measurement Values Automatically

1 Momentarily disconnect (open-circuit) the probes.

2 Connect the probes to the measuring object.

When the measurement is stable, the value is automatically stored and the count is incremented.
When the count reaches the specified number of values, a long beep sounds, and subsequent measurements are not stored.

The (one) last acquired value can be deleted. (UNDO function (p. 98)).

6.3 Performing Statistical Calculations on Measurement Values

Statistical calculations can be performed and results displayed for up to 30,000 measurement values.

Printing is also available (p. 105).

Calculation types: average, maximum and minimum values, population standard deviation, sample standard deviation, and process compatibility indices

Maximum	$X_{\max} = \text{MAX}(x_1, \dots, x_n)$
Minimum	$X_{\min} = \text{MIN}(x_1, \dots, x_n)$
Mean	$\bar{x} = \frac{\sum x}{n}$
Population standard deviation	$\sigma_n = \sqrt{\frac{\sum x^2 - n\bar{x}^2}{n}}$
Standard deviation of sample	$\sigma_{n-1} = \sqrt{\frac{\sum x^2 - n\bar{x}^2}{n-1}}$
Process capability index* (variation)	$C_p = \frac{ Hi - Lo }{6\sigma_{n-1}}$
Process capability index* (bias)	$C_pK = \frac{ Hi - Lo - Hi + Lo - 2\bar{x} }{6\sigma_{n-1}}$

In these formulas, n represents the number of valid data samples.

Hi and Lo are the upper and lower thresholds of the comparator.

* The process capability index represents the quality achievement capability created by a process, which is the "Quality variation and width bias possessed by the process".

Generally, depending on the values of Cp and CpK, process capability is evaluated as follows:

Process capability	
$C_p, C_pK > 1.33$	Ideal
$1.33 \geq C_p, C_pK > 1.00$	Adequate
$1.00 \geq C_p, C_pK$	Inadequate

- When only one valid data sample exists, standard deviation of sample and process capability indices are not displayed.
- When $\sigma_{n-1} = 0$, Cp and Cpk are 99.99.
- The upper limit of Cp and CpK is 99.99. If Cp and CpK>are 99.99, the value 99.99 is displayed.
- Negative values of Cpk are considered as Cpk = 0.
- If statistical calculation is turned off and then back on without first clearing the calculation results, calculation resumes from the point when it was turned off.
- Measurement speed is reduced when statistical calculation is enabled.
- When Auto-Memory is enabled (ON), statistical calculation is forcibly enabled (ON).
- When statistical calculation is disabled (OFF), Auto-Memory is forcibly disabled (OFF).

Deleting Statistical Calculation Results

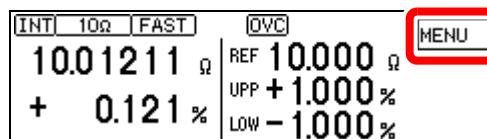
Stored data is automatically erased at the following timings:

- When the memory function setting (including data-memory) is changed (p. 173)
- When the range is changed (p. 34)
- When changing comparator settings (p. 38)
- When printing the statistical calculations (p. 105)
- When the measuring object is changed (p. 30)
- When system reset (p. 88)
- When setting the auto-memory number of values to store (p. 94)

Using Statistical Calculations

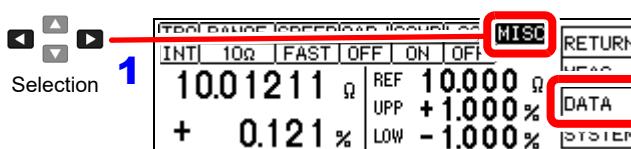
When statistical calculation is set to ON and an EXT. I/O trigger signal is applied, operation will be performed as follows depending on the trigger source setting:

- With external [EXT] triggering: One measurement is performed and subject to statistical calculation.
- With internal [INT] triggering: The next measurement value after the trigger signal is subjected to statistical calculation.

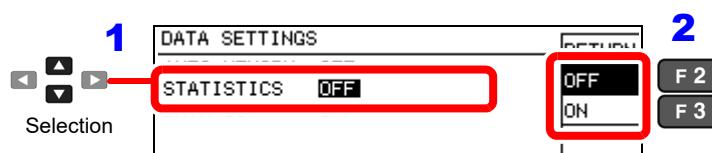

Operation is the same in the following cases:

(Key Operations)

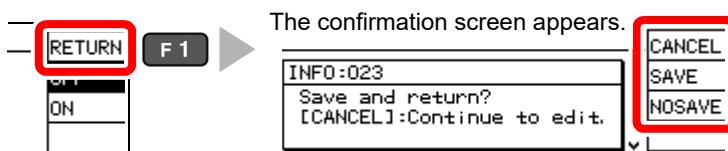
(Remote Control)


- When the **F4** [MANU] key on the [MENU] - [TRG] selection screen is pressed.
- When the **F2** [PRINT] key on the Measurement screen is pressed (with internal triggering and Auto-Memory disabled. Appears only when the interface is set for the printer.).
- When acquiring measurement values with the Auto-Memory function (p. 93).
- When a ***TRG** remote control command is received.
- When an EXT. I/O **PRINT** signal is applied on the Measurement screen (with internal triggering and Auto-Memory disabled).

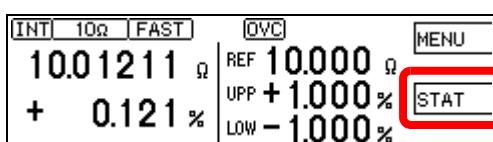
1 Open the Basic Settings screen.


The Basic Settings screen appears.

2 Open the Data Memory Settings screen.


The Data Settings screen appears.
[DATA SETTINGS]

3 Enable or disable the function.



2
F2 Disables statistical calculation (default).
F3 Enables statistical calculation.

4 Return to the Measurement screen.

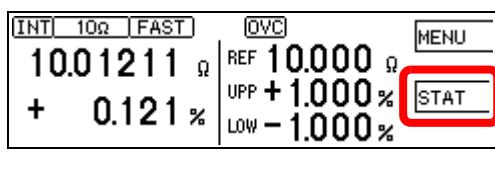
F1 Returns to the setting screen.
F2 Saves setting and return to previous screen.
F3 Discards setting and return to previous screen.

When statistical calculation is enabled, **F3** [STAT] appears on the Measurement screen.
Confirm calculation results (p. 98)

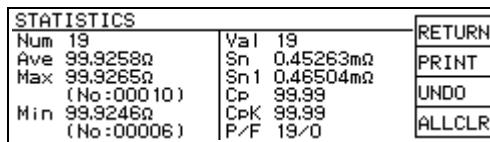
Confirming, Printing, and Erasing Statistical Calculation Results

Statistical calculation results are displayed on the screen.

Printing is available using commercially available printers having a serial interface. Statistical calculation results are automatically erased after printing.


Before printing, select the [PRINT] interface setting.

See: "7.2 Setting the Instrument" (p. 103)


The number of valid samples can be confirmed on the Statistical Calculation Results screen.

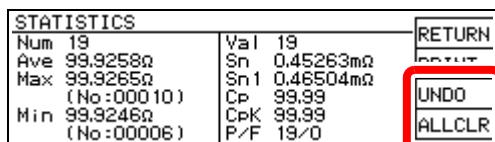
- When the number of valid samples (Val) is zero, calculation results are not displayed.
- When only one valid data sample exists, no standard deviation or process capability indices are displayed.

1 Display the Calculation Results screen.

Calculation Results screen is displayed (only if statistical calculation is enabled).

Num	Total data count	Val	Number of valid measurement values (error-free data) (Valid)
Ave	Mean	Sn	Population standard deviation
Max	Maximum	Sn1	Standard deviation of sample
Min	Minimum	Cp	Process capability index (variation)
		Cpk	Process capability index (bias)
		P/F	Pass/fail counts

2 To print


To print, select the printer as the interface setting on the System screen (p. 103).

Output to the printer.
"Example Printouts (PRINT MODE: NORMAL)" (p. 106)

Statistical calculation results and stored data are erased when printing finishes.

To erase

Erases the last measurement and calculation result (executes only once).

Erases all measurement values and statistical calculation results.

After selecting, a confirmation screen appears.

6.4 Auto-Exporting Measurement Values (at End of Measurement) (Data Output Function)

At the end of measurement, the measurement value is exported to a computer via RS-232C.

See: "Chapter 9 Communications (RS-232C/ GP-IB Interface)" (p. 123)

NOTE

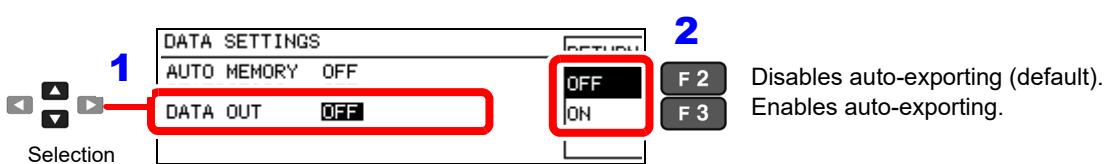
- Set the interface to [RS232C] beforehand. This function is not applicable to the GP-IB Interface.

See: "9.4 Configuring the Communications Protocol" (p. 127)

- When internal [TRG: INT] triggering is selected, data is exported only when a $\overline{\text{TRIG}}$ signal is applied.
- Executing a :READ? query command exports duplicate measurement values.
- Even when using other queries, ensure that the query response and auto-exporting of measured values do not overlap.
- The data format for measurement values can be selected as ASCII (default) or BINARY. Transfer time is minimized when BINARY is selected.

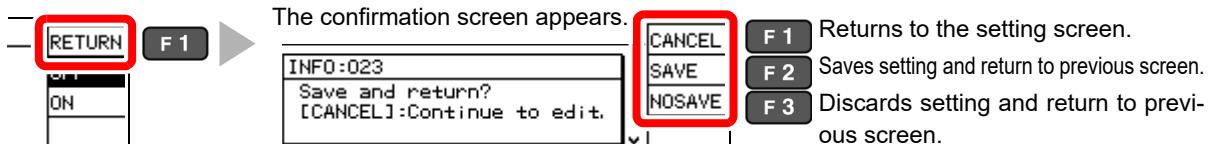
See: ":SYSTem:FORMAT <ASCIi/ BINary>" (p. 167)

1 Open the Basic Settings screen.



6

2 Open the Data Memory Settings screen.



3 Enable or disable the function.

Disables auto-exporting (default).
Enables auto-exporting.

4 Return to the Measurement screen.

F1 Returns to the setting screen.

F2 Saves setting and return to previous screen.

F3 Discards setting and return to previous screen.

6.5 Outputting Measured Values as Relative Values (Percentage Output Function) (RM3542C-1, RM3542C-2 or RM3542C-3)

When the comparator function is set to REF% mode, you can change transmitted measurement data to relative values.

See: "3.7 Judging Measurement Values (Comparator Function)" (p. 38)

This setting applies to the following message responses (transmit data).

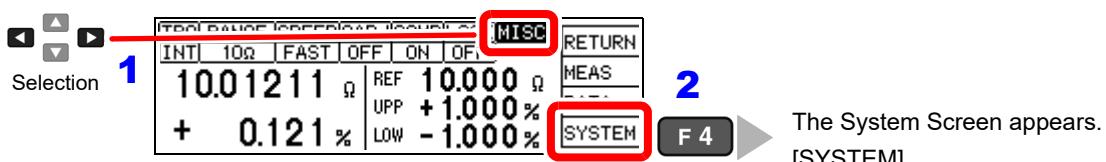
- **:FETCh?**
- **:READ?**
- **:MEMORY:DATA?**

It also applies to transmit data that is output using the data output function.

See: "6.4 Auto-Exporting Measurement Values (at End of Measurement) (Data Output Function)" (p. 99)

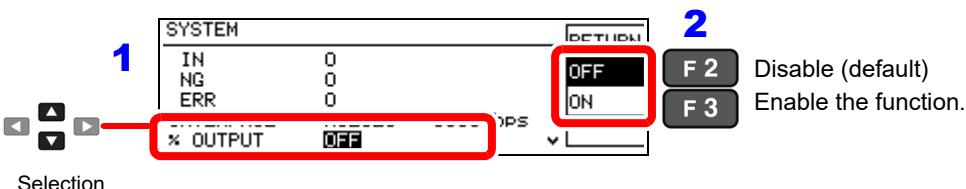
The output data range is as follows:

-999.9990[%] to +999.9990[%]


1 Open the Basic Settings screen.

F 1

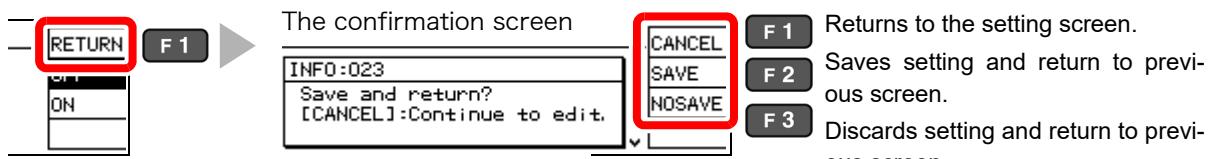
The Basic Settings screen appears.


2 Open the System Settings screen.

F 4

The System Screen appears.
[SYSTEM]

3 Enable the percentage output function.



F 2

Disable (default)
Enable the function.

F 3

4 Return to the Measurement screen.

F 1

Returns to the setting screen.

F 2

Saves setting and return to previous screen.

F 3

Discards setting and return to previous screen.

Measured value format (when the percentage output function is enabled)

Relative value	When displaying ±OvrRng %	When displaying ±OvrRng Ω	Measurement fault
± XXX . XXXX E+0	±100.0000E+7	±100.0000E+7	+100.0000E+8

NOTE

If the comparator function is set to ABS mode, measurement outliers occurring while the percentage output function is disabled will be output.

See: "Measurement Value Format" (p. 171)

Printing

Chapter 7

Connecting the printer to the instrument

Setting the Instrument (p. 103)

Make printer settings

Printing (p. 105)

- Measurement values and comparator judgments
- Statistical calculation results

7.1 Connecting the Printer

Before connecting the printer

WARNING

Because electric shock and instrument damage hazards are present, always follow the steps below when connecting the printer.

- Always turn off the instrument and the printer before connecting.
- A serious hazard can occur if a wire becomes dislocated and contacts another conductor during operation. Make certain connections are secure.

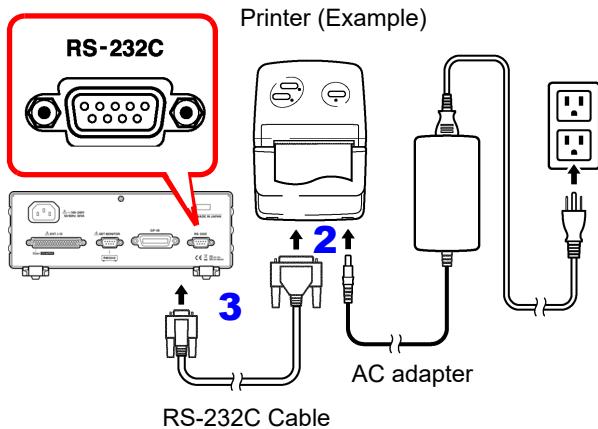
NOTE

- As much as possible, avoid printing in hot and humid environments. Otherwise, printer life may be severely shortened.
- Use only compatible recording paper in the printer. Using non-specified paper may not only result in faulty printing, but printing may become impossible.
- The recording paper may jam if it move at angle relative to the roller.

7

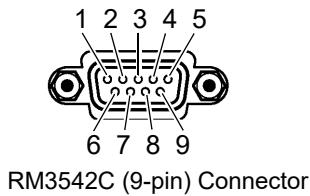
Compatible printer

The requirements for a printer to be connected to the instrument are as follows.

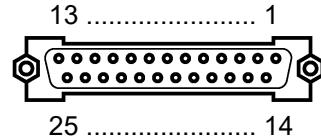

Confirm compatibility and make the appropriate settings on the printer before connecting it to the instrument.

See: "7.2 Setting the Instrument" (p. 103)

- Interface RS-232C
- Characters per line At least 45
- Communication speed 9600 bps
- Data bits 8
- Parity none
- Stop bits 1
- Flow control none


Connecting the Printer to the Instrument

Connection Methods



- 1 Confirm that the instrument and the printer are turned off.
- 2 Connect the AC adapter to the printer, and insert the power plug into an outlet.
- 3 Connect the RS-232C cable to the RS-232C connectors on the instrument and printer.
- 4 Turn the instrument and printer on.

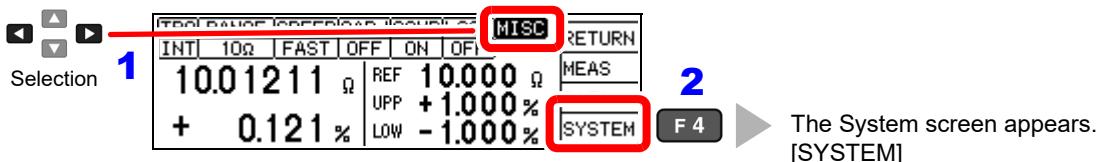
Connector Pinouts

RM3542C (9-pin) Connector

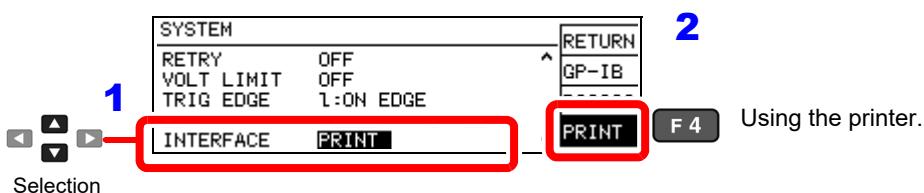
Printer's (25-pin) connector (Example)

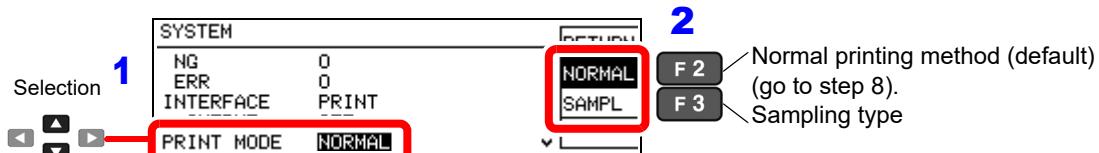
Circuit Name	Signal name	Pin No.
Receiving data	RxD	2
Transmitting data	TxD	3
Signal ground or common return	GND	5

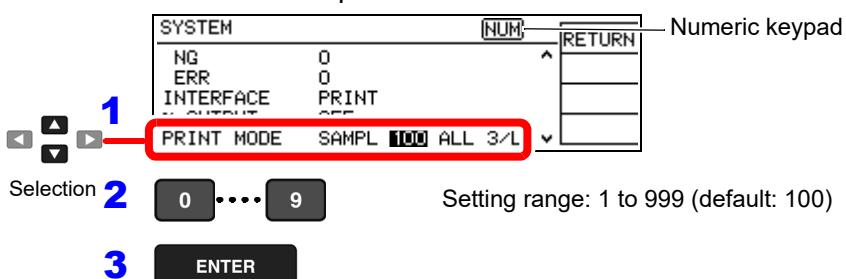
Pin No.	Signal name	Circuit Name
2	TxD	Transmitting data
3	RxD	Receiving data
7	GND	Signal ground or common return
4	RTS	Request to Send
5	CTS	Clear to Send


7.2 Setting the Instrument

For RM3542C-4 and RM3542C-5, steps 4 through 7 do not apply.

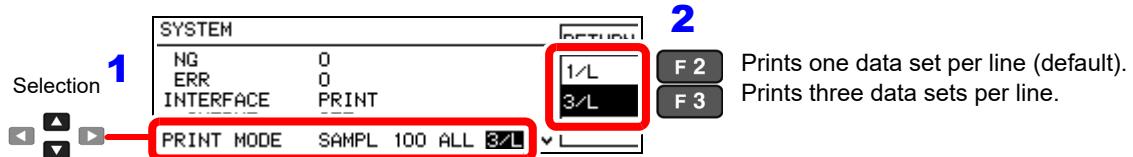

1 Open the Basic Settings screen.


2 Open the System screen.

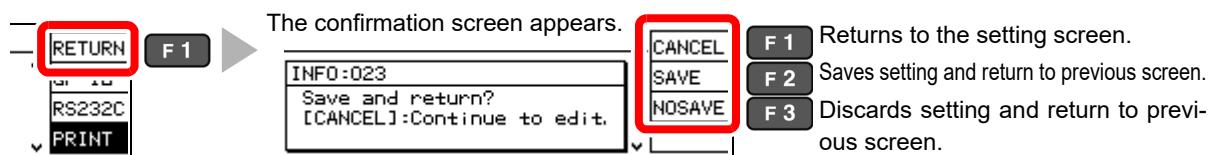

3 Select print as the interface type.

4 Select the printing method.

5 Select the number of samples.



6 Select the printing conditions.

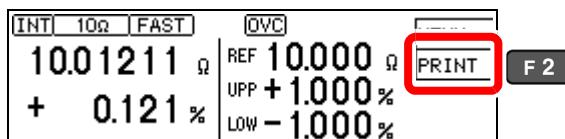


7.2 Setting the Instrument

7 Select the number of data sets per line.

8 Return to the Measurement screen.

7.3 Printing


Before Printing

Verify that the instrument and printer settings (p. 103) are correct.

Printing Measurement Values and Comparator Judgments

Printing by key operation

Press the **F2 [PRINT]** key to print the measurement value currently displayed on the Measurement screen.

Printing by external control

Measurement values and comparator judgments can be printed when the **PRINT** signal (the instrument's EXT. I/O connector) is set to Low (ON) (shorted with ISO_GND*).

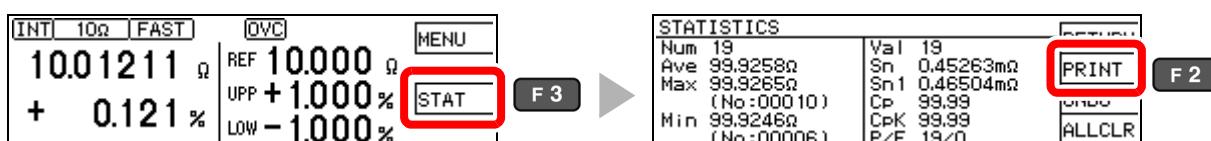
* ISO_GND is one of the pins of the instrument's EXT. I/O connector.

NOTE

When statistical calculation is enabled [STATISTICS: ON] and triggering source is set to internal triggering [TRG: INT], statistical calculations are performed and measurement values are printed. When external [TRG: EXT] triggering is selected, only measurement values are printed. Use the **TRIG** signal to perform statistical calculations with external triggering.

Printing Statistical Calculation Results

Statistical calculation results can be printed when auto-memory or statistical calculation is enabled [ON]. To print, select **PRINT** on the screen or set the **PRINT** signal (the instrument's EXT. I/O connector) to Low (ON) (shorted with ISO_GND*).


To enable auto-memory:

See: "6.2 Store as soon as Measurement is Stable (Auto-Memory Function)" (p. 93)

To enable statistical calculation:

See: "6.3 Performing Statistical Calculations on Measurement Values" (p. 96)

(When statistical calculation is enabled)

If no valid data exists, only the data set is printed. When only one valid data set exists, standard deviation of sample and process capability index cannot be printed.

Example Printouts (PRINT MODE: NORMAL)

Resistance measurements

```

1 0.8725mOhm Lo
2 0.484mOhm Lo
3 10.99998 Ohm IN
4 -10.0026 Ohm Lo
27 9.9986 Ohm Hi
28 9.996 Ohm Hi
29 0.01003kOhm Hi
30 0.00012MOhm Hi

```

Measurement fault values

```

1 OvrRng Hi
2 -OvrRng Lo
3 C.E.Hi --
4 C.E.Lo --
5 C.E.Volt --
6 ----- --

```

Auto-memory data and statistical calculation results

```

Date(Y-M-D): 09-02-01 Time: 06:18:00
Ref: 1000.000 Ohm Upp: +1.000% Low: -1.500%
1 999.885 Ohm -0.011% IN
2 1001.885 Ohm +0.189% IN
3 1002.394 Ohm +0.239% IN
4 1002.892 Ohm +0.289% IN
5 1012.894 Ohm +1.289% Hi
6 1000.897 Ohm +0.090% IN
7 998.902 Ohm -0.110% IN
8 994.888 Ohm -0.511% IN
9 1000.391 Ohm +0.039% IN
10 979.892 Ohm -2.011% Lo
Hi: 1 IN: 8 Lo: 1 OR: 0
Number: 10 Valid: 10
Max 1012.894 Ohm +1.289% ( 5)
Min 979.892 Ohm -2.011% ( 10)
Avg 999.492 Ohm -0.051%
Sn 7.83568 Ohm
Sn-1 8.25953 Ohm
Cp 0.50
CpK 0.42

```

Example Printouts (PRINT MODE: SAMPL)

Resistance measurement values

```
*****
HIOKI RM3542C *****
Date(Y-M-D): 3/1/2016 Time: 1:45:50 PM
Ref: 10.00000 Ohm Upp: +10.00% Low: -10.00%
-91.2750/Lo-95.1600/Lo +9.9998/IN
200.0260/Lo
```

Measurement error values

```
*****
HIOKI RM3542C *****
Date(Y-M-D): 3/1/2016 Time: 1:45:50 PM
Ref: 10.00000 Ohm Upp: +10.0000% Low: -
10.0000%
999.9999%/Hi999.9999%/Lo MEAS.ERR/--
MEAS.ERR/-- MEAS.ERR/-- MEAS.ERR/--
```

Auto-memory data and statistical calculation results

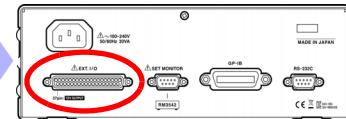
```

Date: 09-02-01 Time: 06:18:00
Ref: 1000.000 Ohm Upp: +1.000% Low: -1.500%
-0.011%/IN +0.189%/IN +0.239%/IN
+0.289%/IN +1.289%/IN +0.090%/IN
-0.110%/IN -0.511%/IN +0.039%/IN
-2.011%/Lo
Hi: 1 IN: 8 Lo: 1 OR: 0
Number: 10 Valid: 10
Max 1012.894 Ohm +1.289% ( 5)
Min 979.892 Ohm -2.011% ( 10)
Avg 999.492 Ohm -0.051%
Sn 7.83568 Ohm
Sn-1 8.25953 Ohm
Cp 0.50
CpK 0.42

```

- The "Valid" statistical calculation result indicates the number (count) of data samples not subject to errors such as measurement faults.
- Among the comparator judgment result counts (Hi, IN, Lo, and OR), "OR" indicates the number (count) of out-of-range measurements.

External Control Chapter 8


The EXT. I/O connector on the rear of the instrument supports the external control by providing signals for the end-of-measurements and comparator judgment signals, and by accepting the input of the measurement trigger and key-lock signals.

All signals are isolated by optocouplers. (inputs and outputs share a common signal ground.)

Confirm input and output ratings, understand the safety precautions for connecting a control system, and use accordingly.

Connect the EXT. I/O connector of this instrument with the signal output or input device

Setting the Instrument
(p. 118)

Signal input/output

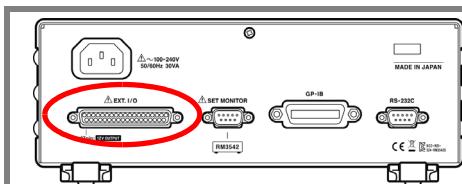
8.1 Ext. I/O Connectors and Signals

WARNING

To avoid electric shock or damage to the equipment, always observe the following precautions when connecting to the EXT. I/O connector.

- Always turn off the power to the instrument and to any devices to be connected before making connections.
- During operation, a disconnected wire coming in contact with another conductive object may cause a serious hazard. Make sure that the connections are secure and use screws to secure the external connectors.

CAUTION

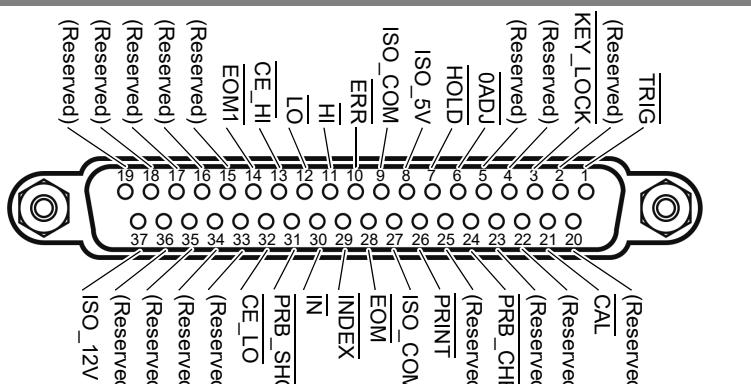

To avoid damage to the instrument, observe the following cautions:

- Do not apply voltage or current to the EXT. I/O connectors that exceeds their ratings. (p. 116)
- Properly insulate any devices and instruments to be connected to the EXT. I/O connector.
- When driving relays, be sure to install diodes to absorb counter-electromotive force.
- The ISO_5 V pin of the EXT. I/O connector is a 5 V power output. Do not apply external power to this pin. Be careful not to short-circuit ISO_5 V to ISO_COM.
- The ISO_12 V pin of the EXT. I/O connector is a 12 V power output. Do not apply external power to this pin. Be careful not to short-circuit ISO_5 V to ISO_COM.

See: "Connector Type and Signal Pinouts" (p. 108)

8.1 Ext. I/O Connectors and Signals

Connector Type and Signal Pinouts



Connector: (Instrument Side)

- 37-pin D-sub female with #4-40 inch screws

Mating Connectors:

- DC-37P-ULR (solder type)
- DCSP-JB37PR (pressure weld type)

EXT. I/O Connector (Instrument Side)

Pin	Signal name	I/O	Functions	Logic	
1	<u>TRIG</u>	IN	External trigger	Pos/ Neg	Edge
2	(Reserved)	—	—	—	—
3	KEY_LOCK	IN	Key-Lock	Neg	Level
4	(Reserved)	—	—	—	—
5	(Reserved)	—	—	—	—
6	<u>0ADJ*1</u>	IN	Execute zero-adjustment	Neg	Edge
7	<u>HOLD</u>	IN	Enable external triggering	Neg	Level
8	ISO_5V	-	Isolated 5 V power output	—	—
9	ISO_COM	-	Isolated common signal ground	—	—
10	<u>ERR</u>	OUT	Measurement faults	Neg	Level
11	<u>HI</u>	OUT	Comparator judgment result HI	Neg	Level
12	<u>LO</u>	OUT	Comparator judgment result Lo	Neg	Level
13	<u>CE_HI</u>	OUT	Probe (HI side) contact error	Neg	Level
14	<u>EOM1</u>	OUT	During stage configuration First-stage EOM	Neg	Edge
15	(Reserved)	—	—	—	—
16	(Reserved)	—	—	—	—
17	(Reserved)	—	—	—	—
18	(Reserved)	—	—	—	—
19	(Reserved)	—	—	—	—

Pin	Signal name	I/O	Functions	Logic	
20	(Reserved)	—	—	—	—
21	<u>CAL</u>	IN	Execute self-calibration	Neg	Edge
22	(Reserved)	—	—	—	—
23	(Reserved)	—	—	—	—
24	<u>PRB_CHECK</u>	IN	Probe short-circuit detection Execute	Neg	Edge
25	(Reserved)	—	—	—	—
26	<u>PRINT</u>	IN	Print measurement value	Neg	Edge
27	<u>ISO_COM</u>	-	Isolated common signal ground	—	—
28	<u>EOM</u>	OUT	End of measurement During stage configuration Second-stage EOM	Neg	Edge
29	<u>INDEX</u>	OUT	Analog measurement finished	Neg	Edge
30	<u>IN</u>	OUT	Comparator judgment result IN	Neg	Level
31	<u>PRB_SHORT</u>	OUT	Probe short-circuit error	Neg	Level
32	<u>CE_LO</u>	OUT	Probe (LO side) contact error	Neg	Level
33	(Reserved)	—	—	—	—
34	(Reserved)	—	—	—	—
35	(Reserved)	—	—	—	—
36	(Reserved)	—	—	—	—
37	<u>ISO_12V</u>	—	Isolated 12 V power output	—	—

**Reserved pins are not connected inside the instrument.
Do not connect to the reserved pins.**

*1 When using the ΔR function, CLR_DATA (clear first stage measurement value)

NOTE

- The 0ADJ signal should be asserted (Low) for at least 10 ms.
- The connector shell is conductively connected to the metal instrument chassis and the protective earth pin of the power plug. Be aware that it is not isolated from ground.

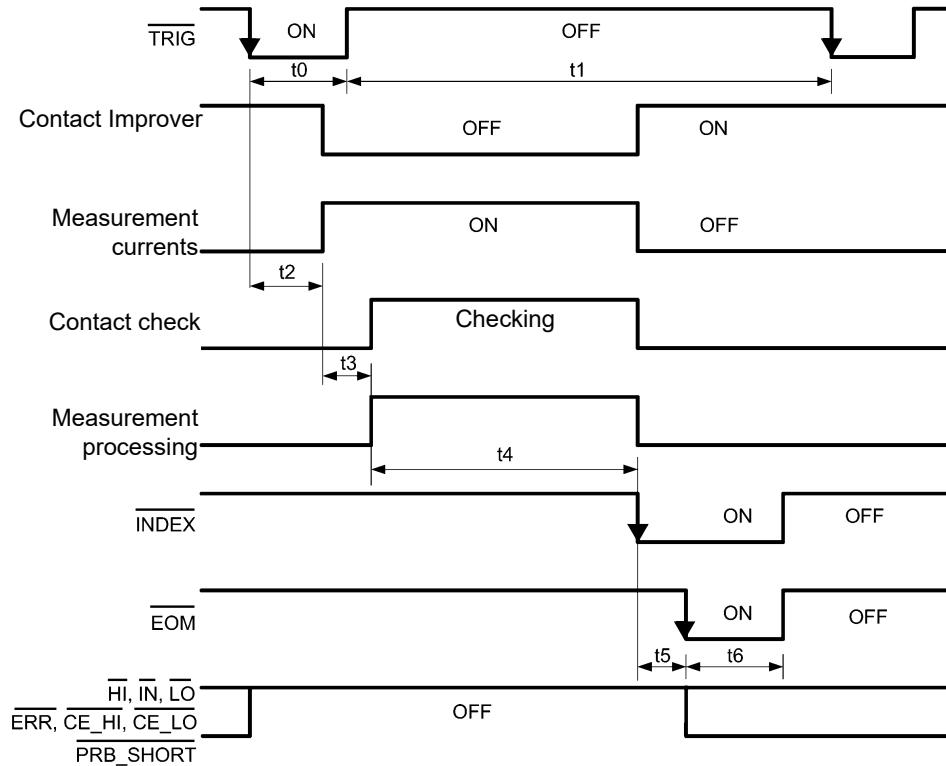
Signal Descriptions

Input Signals

TRIG	<p>When external triggering [EXT] is enabled, one measurement is performed at the falling (ON) or rising (OFF) edge of the TRIG signal. Falling (ON) or rising (OFF) edge triggering can be selected on the Settings screen. (default: falling (ON))</p> <p>When internal triggering [INT] is enabled, external triggering is disabled.</p> <p>Also, when the Settings Monitor function (p. 64) is enabled and an error occurs, triggering is disabled.</p> <p>The TRIG signal performs the following operations in addition to external triggering.</p> <ul style="list-style-type: none"> • Stores statistical calculation data (when statistical calculation is enabled) • Stores measured data to internal memory (when the data memory function is enabled) <p>(also operates with internal triggering)</p>	(p. 119)
0ADJ	Changing the 0ADJ signal from High (OFF) to Low (ON) causes one zero-adjustment operation to be performed at the edge of the change. To avoid a malfunction, this signal should be asserted (Low) for at least 10 ms.	(p. 36)
CLR_DATA	When using the ΔR function, switching from High (OFF) to Low (ON) clears the first-stage measured value at that edge.	(p. 77)
PRINT	Changing the PRINT signal from High (OFF) to Low (ON) prints the current measurement value at the edge of the change.	(p. 105)
CAL	<p>Changing the CAL signal from High (OFF) to Low (ON) on the Self Calibration Manual Setting screen executes self calibration at the edge of the change.</p> <p>The time required for self calibration is as follows:</p> <p>Approximately 110 ms (with the 60 Hz line frequency setting), or 130 ms (with the 50 Hz setting)</p> <p>If asserted during measurement, executes after the end of measurement.</p>	(p. 70)
HOLD	While holding the HOLD signal at a low level, set the trigger source to external triggering, [EXT]. When the HOLD signal is high, returns to the settings made on the Settings screen or by commands.	
PRB_CHECK	Changing the PRB_CHECK signal from High (OFF) to Low (ON) executes the probe short-circuit detection at the edge of the change. If asserted during measurement, executes after the specified time from the end of measurement.	(p. 62)
KEY_LOCK	When the KEY_LOCK signal is low (ON), all front panel key operations (excluding the POWER button) are disabled. (Unlocking and remote status cancellation key operations are also disabled.)	(p. 79)

Output Signals

ERR	This signal indicates that a measurement error has occurred (except for out-of-range detection). It is updated simultaneously with the EOM signal. At this time, all comparator judgment result outputs are High (OFF).	(p. 44)
CE_HI	This signal indicates that a contact check error has occurred between the H_{CUR} and H_{POT} contacts. It is updated simultaneously with the EOM signal. At this time, all comparator judgment result outputs are High (OFF).	(p. 55)
CE_LO	This signal indicates that a contact check error has occurred between the L_{CUR} and L_{POT} contacts. It is updated simultaneously with the EOM signal. At this time, all comparator judgment result outputs are High (OFF).	(p. 55)
PRB_SHORT	This signal indicates that a foreign object is shorting the POT and CUR contacts in a four-terminal probe tip. At this time, all comparator judgment result outputs are High (OFF).	(p. 62)

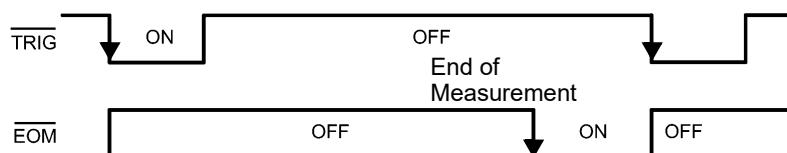

INDEX	This signal indicates that A/D conversion in the measurement circuit is finished. When this signal changes from High (OFF) to Low (ON), you can remove the measuring object from the probe.	
EOM	This signal indicates the end of a measurement. At this time, the states of the comparator judgment outputs and $\overline{\text{ERR}}$, CE_HI , CE_LO and PRB_SHORT are all determined. During stage configuration, serves as the second-stage EOM signal.	(p. 118)
EOM1	During stage configuration, serves as the second-stage EOM signal. During EOM1 stage configuration, serves as the first-stage EOM signal.	
$\overline{\text{HI}}$, $\overline{\text{IN}}$, $\overline{\text{LO}}$	These are the comparator judgment output signals.	

NOTE

- Input signals are ignored when the following are displayed: Basic, Detailed, and Comparator Settings screens; Statistical Calculation Results screen (except for the print signal); and error messages (except for the Setting Monitor errors).
- EXT. I/O input and output signals are not usable while changing the measurement settings.

8.2 Timing Chart

Each signal level indicates a corresponding voltage level.


NOTE

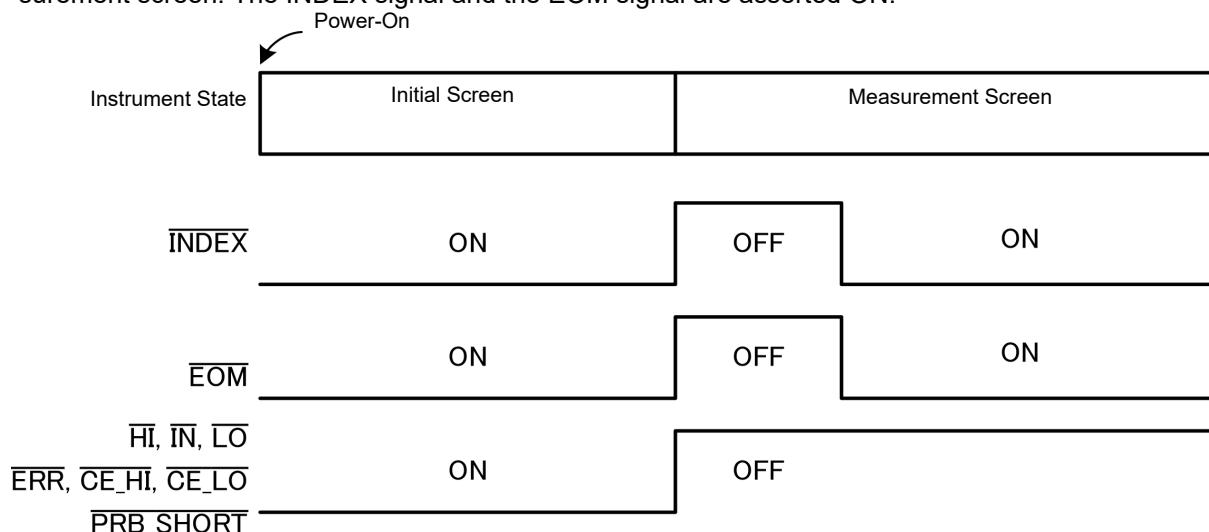
- This shows the operations when the trigger source setting is [EXT] and the EOM output setting is Pulse.
- A self calibration measurement (approximately 130 ms) is automatically performed every 10 minutes. (between measurements). During that time, a TRIG signal input is accepted but the corresponding measurement is delayed until self calibration is finished.
- Do not apply a TRIG signal while measuring using external triggering (the signal is ignored).
- When changing settings, such as the measurement range, allow for processing time (approximately 150 ms) before applying a TRIG signal.
- Input signals are ignored when the following are displayed: Basic, Detailed, and Comparator Settings screens; Statistical Calculation Results screen (except for the PRINT signal); and error messages (except for the Setting Monitor errors).
- The INDEX signal OFF timing is the same as that of the EOM signal OFF timing.
- The output of the comparator judgments and error signals are determined before the EOM signal turns ON.
- With internal triggering, [INT], the EOM signal is fixed at High (OFF). Also, comparator judgments and error signals are not de-asserted (OFF) when measurement starts.

EOM operation when the EOM Output setting is Hold

At the end of the measurement, the EOM signal is asserted ON.

Until the next TRIG signal is input and measurement starts again, the EOM signal continues to be asserted.

See: "Setting the End-of-Measurement Signal Output (EOM Signal Setting)" (p. 118)


NOTE

When the next measurement is started by accepting the next TRIG signal, the EOM signal is de-asserted (OFF).

Output Signal State at Power-On

When the power is turned on, all signals are asserted ON.

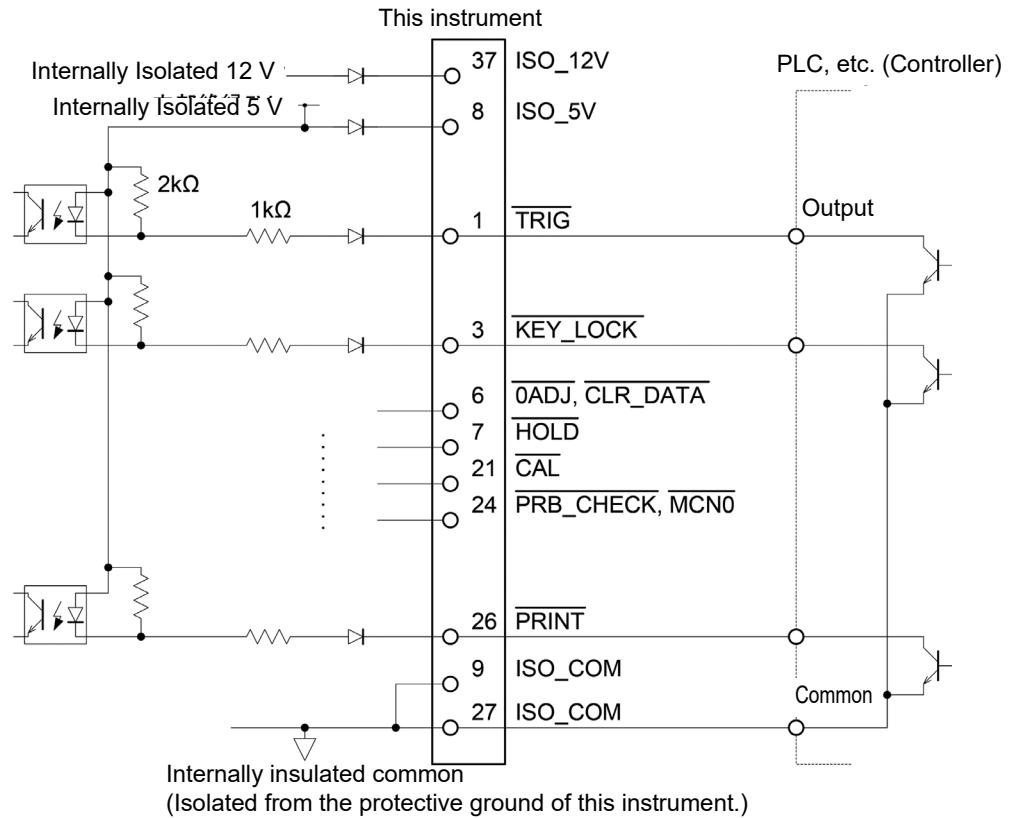
All output signals become OFF (de-asserted active-low) when changing from the initial screen to the Measurement screen. The INDEX signal and the EOM signal are asserted ON.

This shows the operations when the trigger source is set to an external trigger, [EXT].

Timing Chart Interval Descriptions

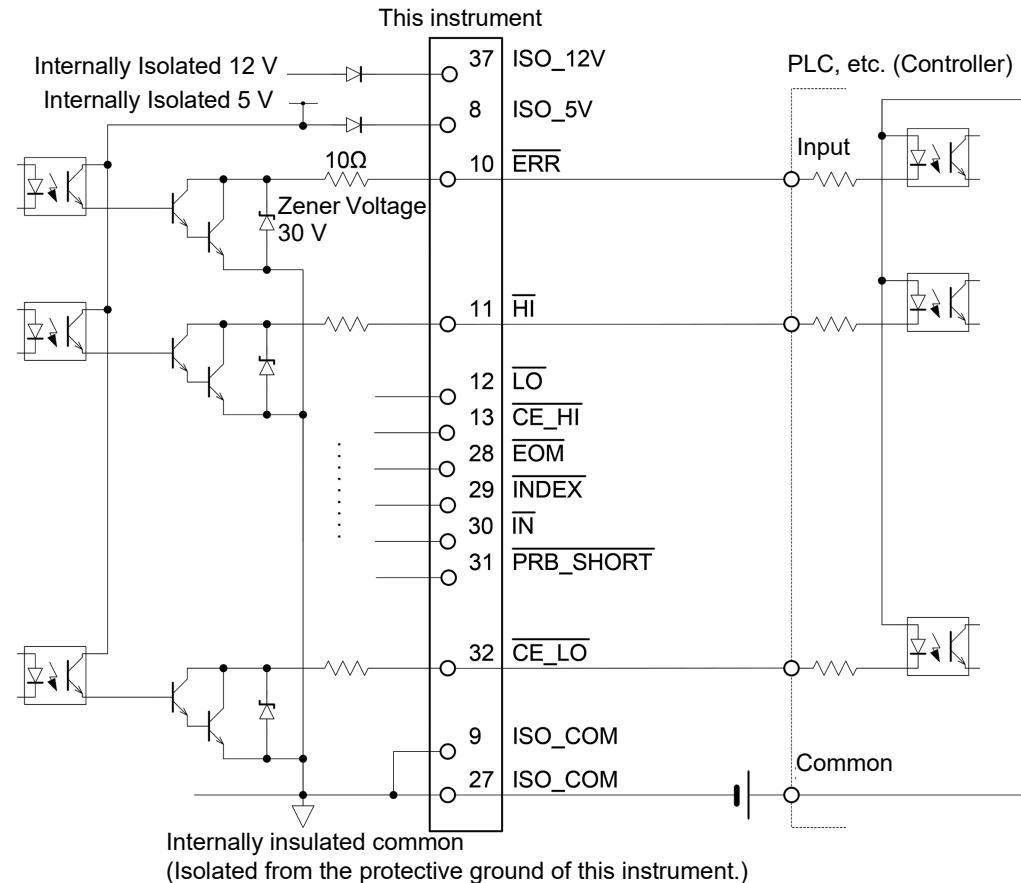
Item	Description	Duration	Remarks
t0	Trigger Pulse Asserted (ON) Time	0.1 ms or more	Falling (ON)-/rising (OFF)-edge selectable
t1	Trigger Pulse De-asserted (OFF) Time	0.1 ms or more	
t2	Delay 1	0 to 100 ms	Setting-dependent
t3	Delay 2	0 to 100 ms	Setting-dependent (When the Contact improvement function is set to Pulse, 0.1 ms or 0.3 ms is added) (p. 209)
t4	Measurement time	0.1 to 100 ms	OVC OFF: Integration Time + Internal Delay (see the following table) OVC ON: (Integration Time + Internal Delay) x 2 + Delay2
t5	Calculation time	0.1 ms	When statistical calculation and memory function are ON, calculation time increases.
t6	EOM pulse width	1 to 100 ms	Setting-dependent

8.2 Timing Chart


Internal Delay

Range	Internal Delay	
	LOW POWER: OFF	LOW POWER: ON
10 mΩ	1.4 ms	–
100 mΩ	1.4 ms	–
1000 mΩ	0.7 ms	0.6 ms
3 Ω	0.5 ms	0.6 ms
10 Ω	0.5 ms	0.6 ms
100 Ω	0.6 ms	0.5 ms
300 Ω	0.6 ms	1.3 ms
1000 Ω	0.6 ms	3.3 ms
10 kΩ	0.6 ms	–
30 kΩ	0.6 ms	–
100 kΩ	0.8 ms	–
300 kΩ	0.8 ms	–
1000 kΩ	0.9 ms	–
3 MΩ	0.9 ms	–
10 MΩ	2.7 ms	–
30 MΩ	3.2 ms	–
100 MΩ	5.2 ms	–

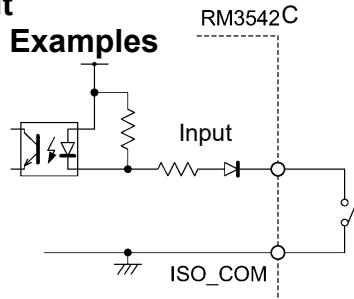
Total processing time before and after measurements


8.3 Internal Circuitry

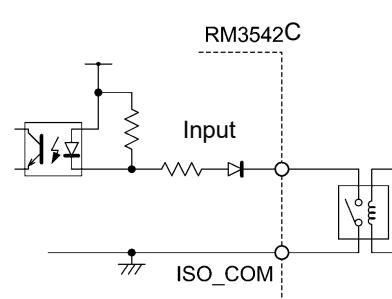
Input Circuit Pins 8 and 37 should not be connected to any external power supply.

Output Circuit

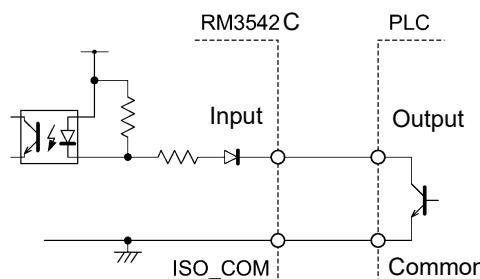
Pins 8 and 37 should not be connected to any external power supply.

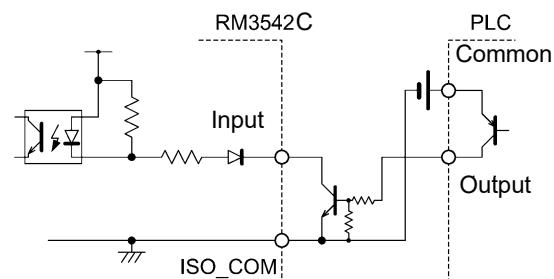


Electrical Specifications

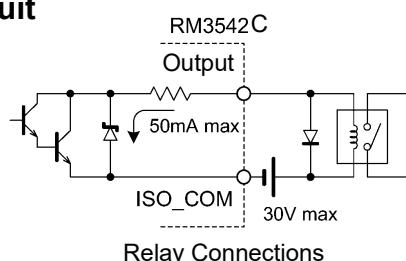

Input Signals	Input type	Optocoupler-isolated, non-voltage contact inputs (compatible with current sink output, active-low) (negative logic)
	Input ON voltage	1 V or less
	Input OFF voltage	OPEN or 5 to 30 V
	Input asserted (ON) current	3 mA/ch
	Maximum applied voltage	30 V
Output Signals	Output type	Optocoupler-isolated npn open-collector outputs (current sink, active-low) (negative logic)
	Maximum load voltage	30 V
	Maximum output current	50 mA/ch
	Residual voltage	1 V (10 mA), 1.5 V (50 mA)
Built-in Isolated Power Supply	+5 V power output	
	Output voltage	4.5 to 5.0 V
	Maximum output current	100 mA
	+12 V power output	
	Output voltage	11.0 to 13.0 V
	Maximum output current	20 mA
	External power input	none
	<ul style="list-style-type: none"> The values of the maximum output current of +5 V output power and +12 V output power are the respective values when they are used independently. 	
	<p>Do not take the load simultaneously from each power supply.</p>	

Connection Examples

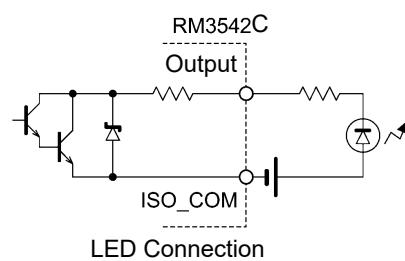

Input Circuit Connection Examples


Switch Connections

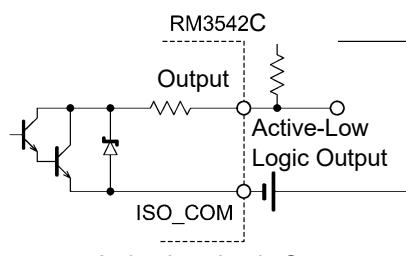
Relay Connections

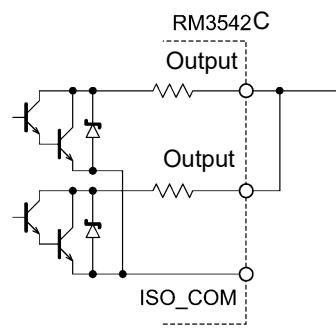


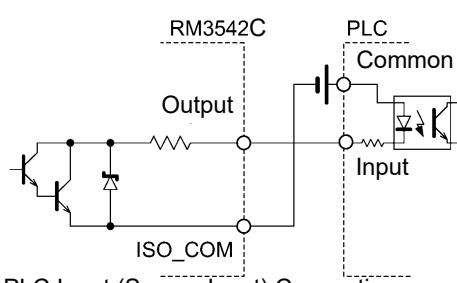
PLC Output (Sink Output) Connections

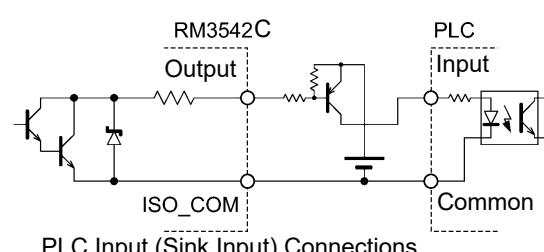


PLC Output (Source Output) Connections


Output Circuit Connection Examples


Relay Connections

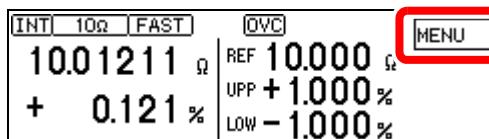

LED Connection


Active-Low Logic Output

Wired OR

PLC Input (Source Input) Connections

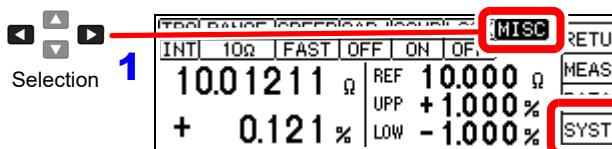
PLC Input (Sink Input) Connections


8.4 Ext. I/O Settings

These settings affect the logic of the end-of-measurement and trigger signals.

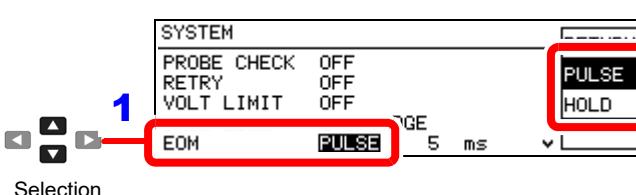
Setting the End-of-Measurement Signal Output (EOM Signal Setting)

Select whether the EOM (End-of-Measurement Signal) output level is retained until the next trigger input, or set for the specified pulse width.


1 Open the Basic Settings screen.

F 1

The Basic Settings screen appears.

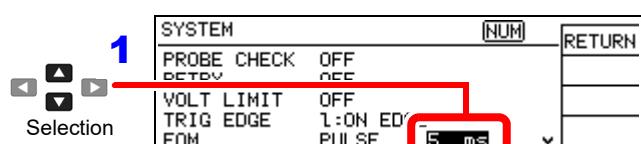

2 Open the System screen.

F 4

The System screen appears.
[SYSTEM]

3 Select the EOM signal output type.

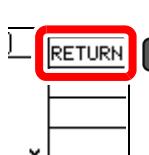
F 2


The specified pulse is outputted after the end-of-measurement (default).

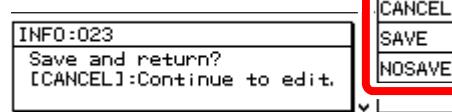
F 3

The EOM signal is retained after the end-of-measurement (go to step 5).

4 (When PULSE is selected)


Set the pulse width.

2 0 9 Setting range: 1 ms to 100 ms (default: 5 ms)


3 ENTER

5 Return to the Measurement screen.

F 1

The confirmation screen appears.

CANCEL
SAVE
NOSAVE

F 1

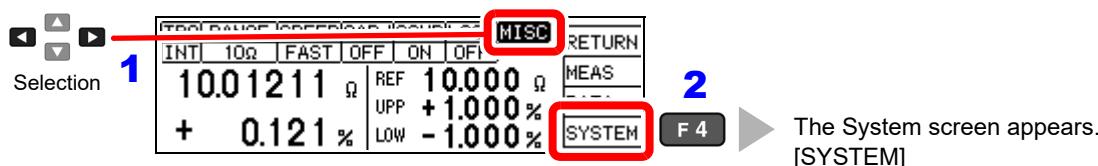
Returns to the setting screen.

F 2

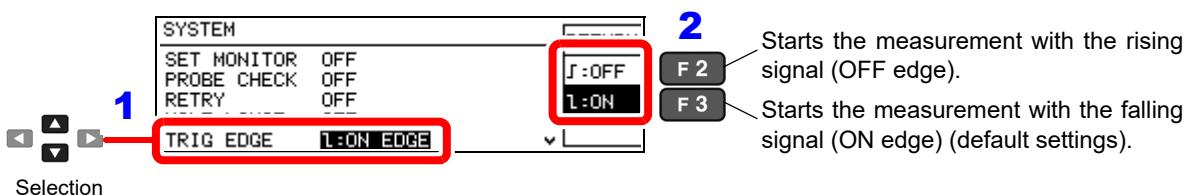
Saves setting and return to previous screen.

F 3

Discards setting and return to previous screen.


Setting the Trigger Signal (TRIG) Logic

Select whether triggering occurs on the falling (ON) or rising (OFF) edge.

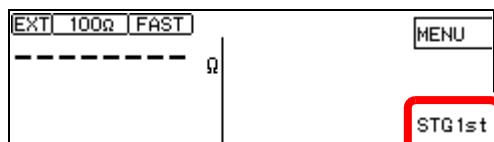

1 Open the Basic Settings screen.

2 Open the System screen.

3 Select the triggering logic edge.

4 Return to the Measurement screen.

8.4 Ext. I/O Settings


Stage Mismatch Prevention Function (RM3542C-1, RM3542C-2 or RM3542C-3)

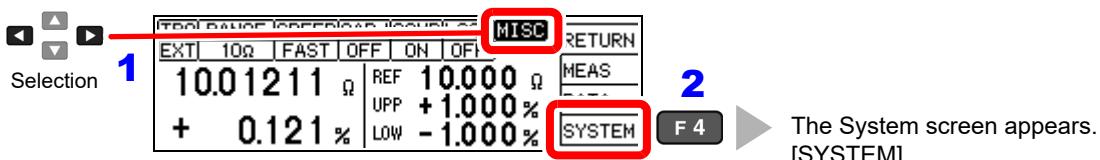
When two instruments are mounted in a testing system, this function changes the output pin of the /EOM signal between the first and second stages of EXT. I/O to prevent erroneous connection of the connection cable. As a result of the change to the /EOM signal output pin, the testing system will not operate normally in the event of an erroneous connection so that the user notices the mistake. Depending on the setting, EOM signal output pins are changed as follows.

Stage setting	/EOM output pin	Screen display
OFF	28 pin	-
1st	14 pin	STG1st
2nd	28 pin	STG2st

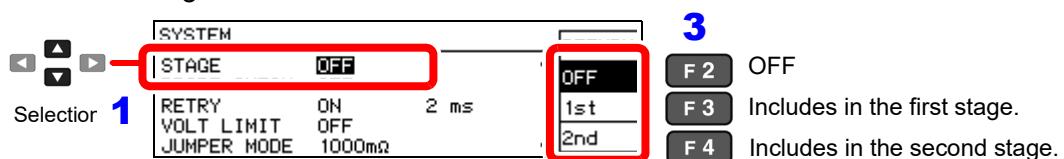
See: "Chapter 8 External Control" (p. 107)

The stage set is displayed at the bottom right of the measurement screen.

NOTE


When this setting is set to anything other than OFF, the ΔR function is automatically disabled.

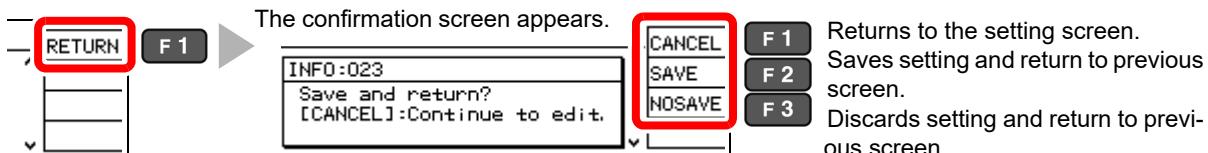
1 Open the Basic Settings screen.


The Basic Settings screen appears.

2 Open the System screen.

The System screen appears.
[SYSTEM]

3 Select the stage.


3

F 2 OFF

F 3 Includes in the first stage.

F 4 Includes in the second stage.

4 Return to the Measurement screen.

F 1 Returns to the setting screen.

Saves setting and return to previous screen.

F 3 Discards setting and return to previous screen.

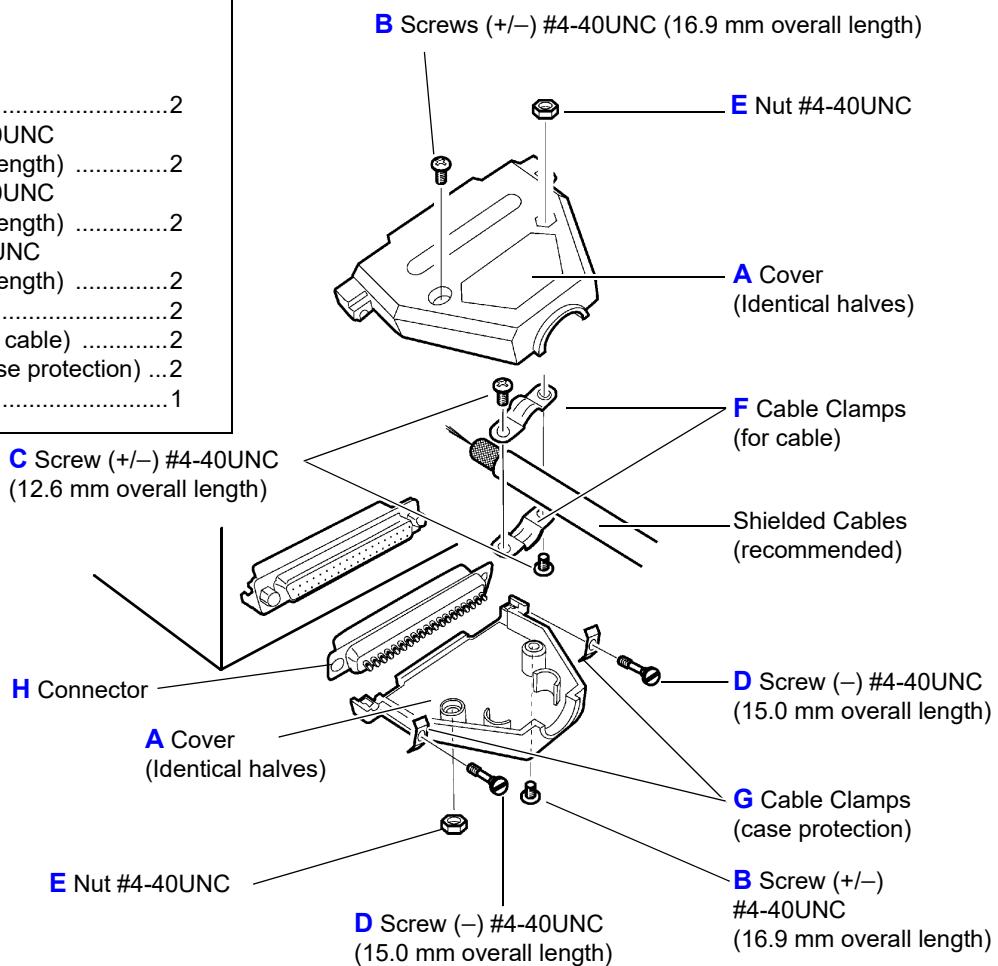
8.5 Q&A Regarding External Control

Common Questions	Answers
How do I connect external trigger input?	Short-circuit the <u>TRIG</u> input pin to an ISO_COM pin using a switch or open-collector output.
Which pins are common ground for input and output signals?	The ISO_COM pins.
Are the common (signal ground) pins shared by both inputs and outputs?	Both common ground pins can be shared by inputs and outputs.
To confirm output signals	Confirm voltage waveforms with an oscilloscope. To do this, pull up (through several $k\Omega$) the output pins, such as the <u>EOM</u> and comparator judgment outputs, to the power supply and check the voltage.
I cannot input the (control) properly. How can I confirm it?	For example, if triggering does not operate properly, bypass the PLC and short the TRIG signal directly to an ISO_COM pin. Be careful to avoid power shorts.
Is the comparator judgment signal (<u>HI</u> , <u>IN</u> , <u>LO</u>) retained during measurement (or is it turned OFF)	The state is determined at the end of measurement, and is off once at the start of measurement.
Why would the <u>EOM</u> signal not be detected?	Try using the Pulse setting for the EOM output. When the measurement time is short and the EOM output is set to Hold, the time to de-assert may be too short to be detected by the PLC. When the EOM output is set to Pulse, after the completion of EOM, the signal is asserted (ON) for the specified pulse width and then turned (OFF), therefore the <u>EOM</u> signal can be detected by the PLC even if the time to de-assert is too short.
What situations cause measurement faults to occur?	An error is displayed in the following cases: <ul style="list-style-type: none"> • A probe is not connected. • A contact is unstable. • A probe or measuring object is dirty or covered by an oxide layer. • Measuring object resistance is much higher than the measurement range.
Is a connector or flat cable for connection provided?	A solder-type connector is supplied. The cable must be prepared at the user's side.
Is direct connection to a PLC possible?	Direct connection is supported for relay or open-collector outputs and positive-ground optocoupler inputs. (Before connecting, confirm that voltage and current ratings will not be exceeded.)
Is it possible to use the communication of RS-232C and the EXT. I/O control simultaneously?	After setting up measurement conditions with the communications interface, it is possible to control measurement with the <u>TRIG</u> signal while acquiring measurement data via a communications interface.
How should external power be connected?	The instrument's EXT. I/O input and output signals all operate from an internal, isolated power source. Therefore, power must not be supplied from the PLC side (prohibited).
I want to acquire a measurement value using the foot switch while free-running.	The software for acquiring measurement values is available for download from our website for free. Please use the software.

8.6 Supplied Connector Assembly

The EXT. I/O connector and cover are supplied with the instrument. Assemble as shown below.

NOTE


- Use shielded cables to connect a PLC to the EXT. I/O connector.
Using non-shielded conductors may result in system errors from electrical noise.
- Connect the shield to the ISO_COM pin of the EXT. I/O connector.

Required tools:

- Screwdriver
- Shielded cable
- Soldering iron

Accessories

• A Cover	2
• B Screws (+/-) #4-40UNC (16.9 mm overall length)	2
• C Screws (+/-) #4-40UNC (12.6 mm overall length)	2
• D Screws (-) #4-40UNC (15.0 mm overall length)	2
• E Nuts #4-40UNC	2
• F Cable Clamps (for cable)	2
• G Cable Clamps (case protection)	2
• H Connector	1

Assembly Sequence

1. Solder the (shielded) cable wires to the supplied EXT. I/O connector (H) pins.
2. Affix the cable clamps (F) on the cable with screws (C).
3. Position the cable clamps (F) to fit properly inside the cover (A).
4. Insert screws (D) through the saddle washers (G).
5. In one half of cover (A), place connector (H), clamps (F), saddle washers (G) and screws (D).
6. Place the other half of cover (A) on top.
7. Affix the halves of the cover (A) together with screws (B) and nuts (E).
Be careful not to overtighten the screws, which could damage the covers.

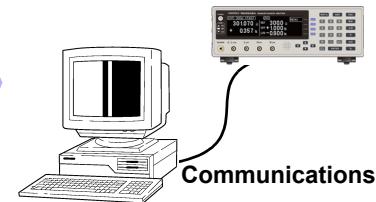
Communications (RS-232C/ GP-IB Interface)

Chapter 9

The symbols shown below indicate that the following instructions are specific to the RS-232C or GP-IB interface. Instructions without these symbols are for both the RS-232C and GP-IB interfaces.

RS-232C : RS-232C only
GP-IB : GP-IB only

Before communication


- Always make use of the connector screws to fix the GP-IB or RS-232C connectors.
- When issuing commands that contain data, make certain that the data is provided in the specified format.
- External command operation is not guaranteed when the Printer is selected as the interface type. In this case, commands should not be sent.

Connecting (p. 125)

Connect the instrument and controller with a GP-IB or RS-232C Interface Cable

Communications Protocol Settings (p. 127)

GP-IB Entering an address
RS-232C Set the instrument to the same communications protocol as the controller
 Select the transmission format

9.1 Overview and Features of Interfaces

The instrument can be controlled by GP-IB or RS-232C. Instrument settings can also be reset.

RS-232C The measurement values can be printed by connecting the instrument to commercially available printers with a serial interface. (p. 101)

GP-IB IEEE 488.2-1987 standard (required) commands can be used.

- Applicable standard IEEE 488.1-1987^{*1}
- Reference Standard IEEE 488.2-1987^{*2}

If the output queue becomes full, a query error is generated and the output queue is cleared. Therefore, clearing the output queue and query error output^{*3} from the deadlocked condition as defined in IEEE 488.2 is not supported.

For details about the communications commands, see "Message Format" (p. 131) and "Message Reference Interpretation" (p. 151).

*1. ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation (ANSI/IEEE Standard 488.1-1987. Programmable measuring device digital interface based on the IEEE Standard)

*2. ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols, and Common Commands (ANSI/IEEE Standard 488.2-1987. Code, format, protocol and standard commands based on the IEEE Standard)

*3. The situation in which the input buffer and the output queue become full, so that processing cannot continue.

9.2 Specifications

Precautions for use RS-232C and GP-IB communications cannot be used simultaneously.

RS-232C Specifications

Transfer method	Communication method: Full duplex Synchronization: Start-stop synchronization
Transmission speed	9600 bps/ 19200 bps/ 38400 bps
Data length	8 bit
Parity	none
Stop bit	1 bit
Message terminator (delimiter)	When receiving: CR+LF/ CR When transmitting: CR+LF
Flow control	none
Electrical specification	Input voltage levels 5 to 15 V: ON, -15 to -5 V: OFF Output voltage levels 5 to 9 V: ON, -9 to -5 V: OFF
Connector	RS-232C Interface Connector Pinout (Male 9-pin D-sub, with #4-40 attachment screws) The I/O connector is in the DTE (Data Terminal Equipment) configuration. Recommended cables: Model 9637 RS-232C Cable (for PC) Model 9638 RS-232C Cable (for the 25-pin D-sub connector)

Operating Code: ASCII codes

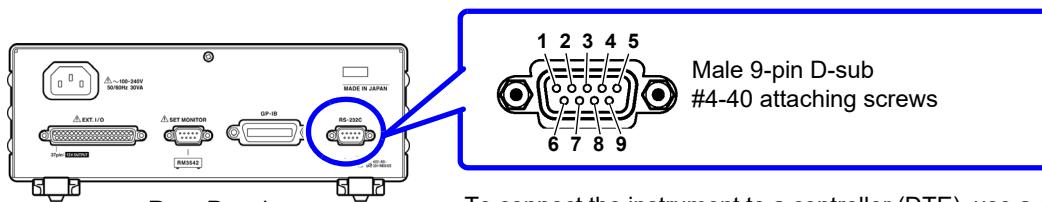
GP-IB Specifications (Interface Functions) (RM3542C-2 or RM3542C-5)

SH1	All Source Handshake functions	●
AH1	All Acceptor Handshake functions	●
T6	Basic talker functions Serial poll functions Talk-only mode The talker cancel function based on MLA (My Listen Address)	● ● — ●
L4	Basic listener functions Listen-only mode The listener cancel function based on MTA (My Talk Address)	● — ●
SR1	All Service Request functions	●
RL1	All Remote/Local functions	●
PP0	Parallel Poll functions	—
DC1	All Device Clear functions	●
DT1	All Device Trigger functions	●
C0	No Controller functions	—

Operating Code: ASCII codes

9.3 Connecting

⚠ WARNING


Always turn both devices OFF when connecting and disconnecting an interface connector. Otherwise, an electric shock accident may occur.

⚠ CAUTION

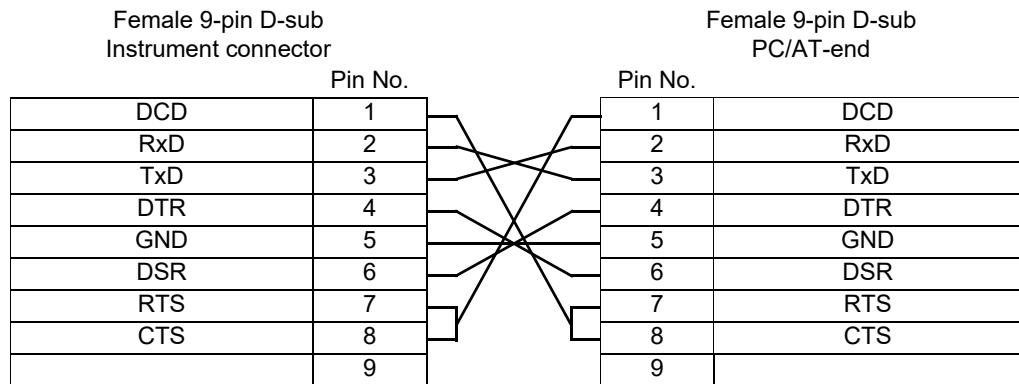
- To avoid damage to the instrument, do not short-circuit the terminal and do not input voltage to the terminal.
- If the connectors are not securely mated, the operation may fail to meet the specifications, and could result in damage.

Using the RS-232C Interface

Connect the RS-232C cable to the RS-232C connector.

To connect the instrument to a controller (DTE), use a crossover cable compatible with the connectors on both the instrument and the controller.

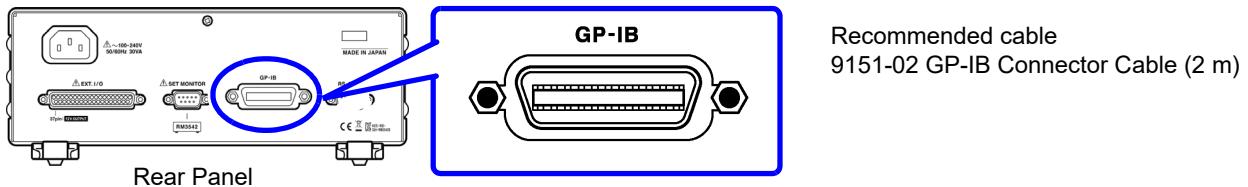
The I/O connector is in the DTE (Data Terminal Equipment) configuration. This instrument uses pins 2, 3, and 5 only. The other pins are not used.


Pin Number	Signal Name			Signal	Remarks
	Code Addr.	EIA	JIS		
1	DCD	CF	CD	Carrier Detect	Not used
2	RxD	BB	RD	Receive Data	
3	TxD	BA	SD	Transmit Data	
4	DTR	CD	ER	Data Terminal Ready	Active (ON) level is +5 to +9 V (constant)
5	GND	AB	SG	Signal Ground	
6	DSR	CC	DR	Data Set Ready	Not used
7	RTS	CA	RS	Request to Send	Active (ON) level is +5 to +9 V (constant)
8	CTS	CB	CS	Clear to Send	Not used
9	RI	CE	CI	Ring Indicator	Not used

9.3 Connecting

Connecting the instrument to a PC

Use a crossover cable with female 9-pin D-sub connectors at both ends.

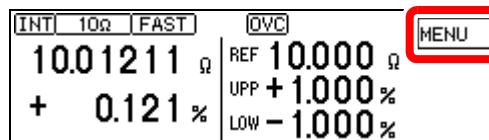

Crossover Wiring

Recommended cables: Hioki Model 9637 RS-232C Cable (1.8 m)

Using the GP-IB Interface (RM3542C-2 or RM3542C-5)

Connect the GP-IB cable to the GP-IB connector.

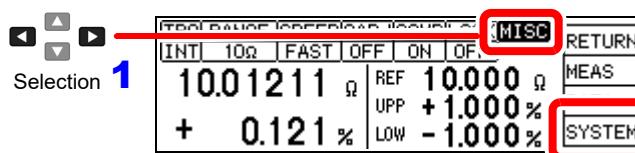
9.4 Configuring the Communications Protocol


Configuring RS-232C Interface Communications Protocol

Configure the interface on the System screen.

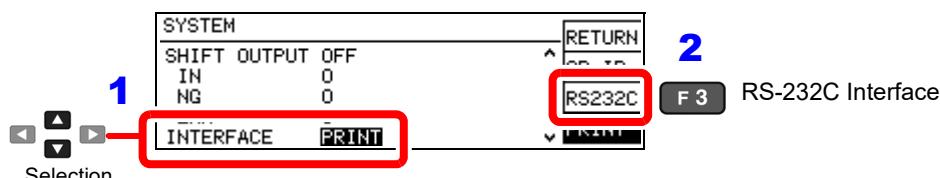
External command operation is undetermined when the Printer is selected as the interface type. In this case, commands should not be sent.

Make these instrument settings.


1 Open the Basic Settings screen.

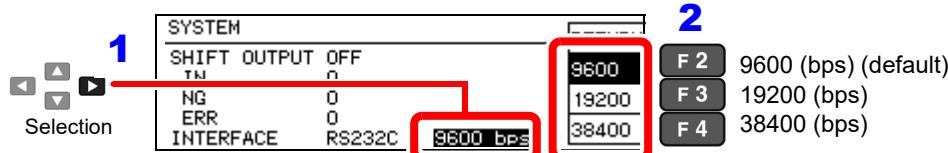
F 1

The Basic Settings screen appears.


2 Open the System screen.

F 4

The System screen appears.
[SYSTEM]


3 Select the interface type.

F 3

RS-232C Interface

4 Select the interface transfer rate.

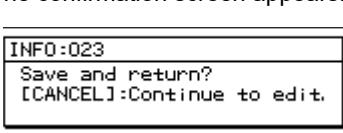
F 2

9600 (bps) (default)

F 3

19200 (bps)

F 4


38400 (bps)

9

5 Return to the Measurement screen.

The confirmation screen appears.

F 1

Returns to the setting screen.

F 2

Saves setting and return to previous screen.

F 3

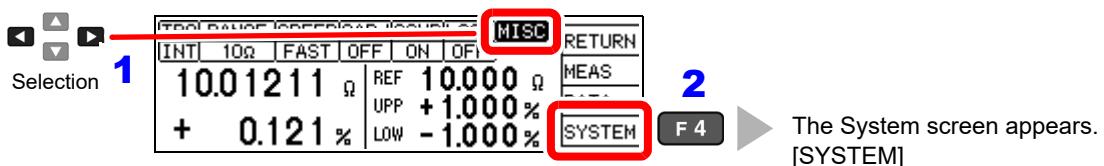
Discards setting and return to previous screen.

Configure the Controller (PC or PLC).

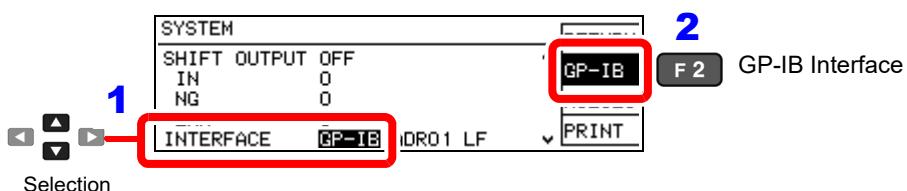
Be sure to set the controller as shown below.

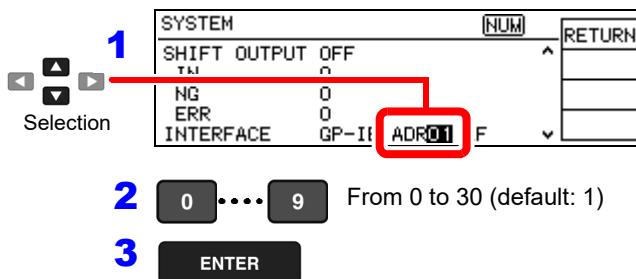
- Start-stop synchronization method
- Transmission Speed: 9600 bps/ 19200 bps/ 38400 bps
(Set it to match the setting of this instrument.)
- Stop bit: 1
- Data length: 8
- Parity check: none

9.4 Configuring the Communications Protocol

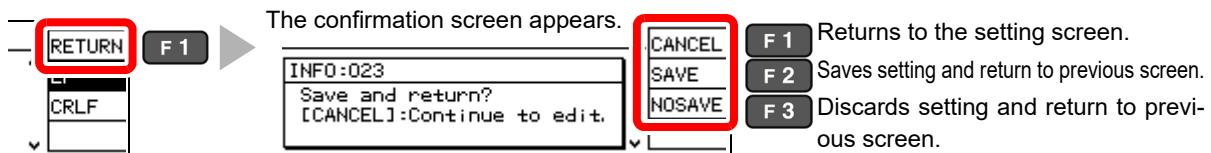

Configuring the GP-IB Interface Communication Protocol
(RM3542C-2 or RM3542C-5)

Set the GP-IB address and message terminator on the System screen.


1 Open the Basic Settings screen.


2 Open the System screen.

3 Select the interface type.


4 Select the instrument's address.

5 Select the interface message terminator.

6 Return to the Measurement screen.

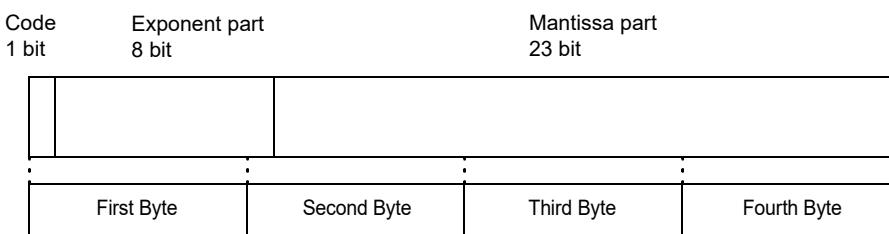
NOTE

"GP-IB" is displayed only for RM3542C-1 and RM3542C-5 which is equipped with GP-IB.

Set the Measurement Value Transmission format (common for RS-232C and GP-IB)

Use the communications commands to set the measurement value transmission format to text or binary.

See: ":SYSTem:FORMAT <ASCIi/ BINary>" (p. 167)


This setting applies only to the data to be sent in response to the following query messages.

- **:FETCh?**
- **:READ?**
- **:MEMORY:DATA?**

It also applies to data output sent by the data output functions.

Binary Data Format

Binary data is in the IEEE single-precision (32-bit) floating-point format.

Binary data is sent in four-byte sequences beginning with the first byte (which includes the sign bit).

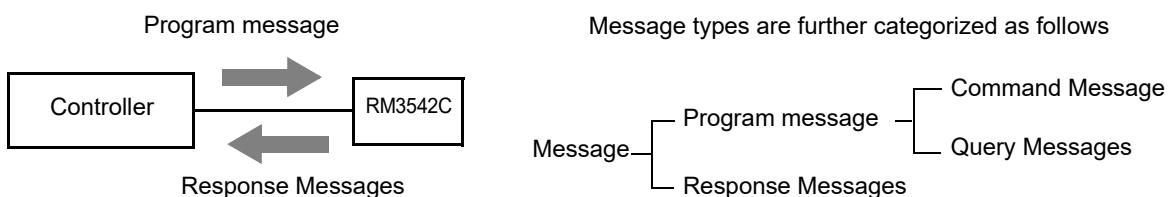
Responses to queries that return a single value, such as **:FETCh?**, the floating-point binary data of measurement values are transmitted as 4-bytes. The delimiter is not sent.

example

Transmit **:FETCh?** + (Delimiter)
Receive (4-byte floating-point data)

9

In case of data with multiple values such as memory data, the delimiter (,) is not transmitted and only the binary data is transmitted continuously.

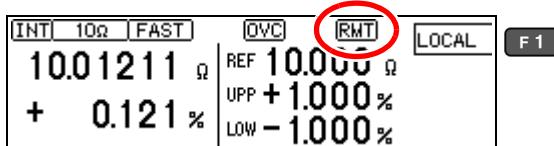

example

Transmit **:MEMORY:DATA?** + (Delimiter)
Receive (4-byte floating-point data) + (4-byte floating-point data)+ ... + (4-byte floating-point data)

9.5 Communication Methods

Various messages are available for controlling the instrument through the interfaces.

Messages can be either program messages sent from the controllers such as PC's, to the instrument, or response messages sent from the instrument to the controllers.



When issuing commands that contain data, make certain that the data is provided in the specified format.

To Cancel the Remote Status (Enter the Local Status)

During remote control operation, **RMT** appears on the Measurement screen, and all operation keys except the **F1** key are disabled.

Pressing the **F1** [LOCAL] key disables remote control and re-enables the operating keys.

In the local lockout state (GP-IB command LLO: Local Lock Out (p. 140)), selecting the [LOCAL] display on the screen is disabled.

In this state, send the GTL command, or turn the instrument off and back on to re-establish local control.

If the Setting screen was displayed when remote control was enabled, the instrument returns to the Measurement screen automatically.

Message Format

■ Program Messages

Program messages can be either Command Messages or Query Messages.

(1) Command Message

Instructions to control the instrument, such as to change settings or reset

Example: instructions to set the measurement range

:RESistance:RANGE 100E3

Header portion Space Data portion

(2) Query Messages

Requests for responses relating to the results of the operation or measurement, or the status of the instrument settings.

Example: (request for the current measurement range)

:RESISTANCE:RANGE?

Header portion Question Mark

For details:

See: "Headers" (p. 132), "Separators" (p. 133), "Data Formats" (p. 133)

■ Response Messages

When a query message is received, its syntax is checked and a response message is generated.

The "**:SYSTem:HEADER**" command determines whether headers are affixed to response messages.

Header ON **:RESISTANCE:RANGE 100.000E+03**

Header OFF **100.000E+03**

(The current resistance measurement range is 100 kΩ.)

During power-on, Header OFF is selected.

If an error occurs when a query message is received, no response message is generated for that query.

When queries such as **:FETCh?** and **:CALCulate:LIIMit:RESult?** have no setting command, no header is included.

9

■ Command Syntax

Command names are chosen to mnemonically represent their function, and can be abbreviated. The full command name is called "**long form**", and the abbreviated name is called the "**short form**".

The commands in this manual are denoted using capital letters for the short form, and small letters for the long form, although the commands are not case-sensitive in actual usage.

FUNCTION OK (long form)

FUNC OK (short form)

FUNCT Error

FUN Error

Response messages generated by the instrument are in **long form and in capital letters**.

■ Headers

Headers must always be added to program messages.

(1) Command Program Headers

There are three types of commands: Simple, Compound and Standard.

- **Headers for Simple Commands**

This header is a single word starting with an English alphabet.

:ESE 0

- **Headers for Compound Commands**

These headers consist of multiple simple command headers separated by colons ":".

:SAMPLE:RESET

- **Headers for Standard Commands**

This header type begins with an asterisk "**",

indicating that it is a standard command defined by IEEE 488.2.

***RST**

(2) Query Program Header

These commands are used to interrogate the instrument for the results of the operations, measurement values and the current status of instrument settings.

As shown in the following examples, a query has a question mark "?"

:FETCH?

:CALCulate:LIMit:REFerence?

NOTE

Characters enclosed by square brackets [] may be omitted.

[:SENSe:] FUNCTION → **:SENSe:FUNCTION** Either form is valid
:FUNCTION

■ Message Terminators

This instrument recognizes the following message/terminators (delimiters):

GP-IB

- LF
- CR+LF
- EOI
- LF with EOI

RS-232C

- CR
- CR+LF

From the instrument's interface settings, the following can be selected as the terminator for response messages.

GP-IB

- LF with EOI (initial setting)
- CR+LR with EOI

RS-232C

- CR+LF

See: "Delimiter Setting" (p. 165)

■ Separators

(1) Message Unit Separator

Multiple message can be written in one line by separating them with semicolons ";"

:SYSTem:LFREquency 60;*IDN?

- When messages are combined in this way and if one command contains an error, all subsequent messages up to the next terminator will be ignored.
- A query error occurs if a query command is combined with an immediately following semi-colon and subsequent command.

(2) Header Separator

In a message consisting of both a header and data, the header is separated from the data by a space " " (ASCII code 20H).

:SYSTem:HEADer OFF

(3) Data Separator

In a message containing multiple data items, commas are required to separate the data items from one another.

:CALCulate:LIMit:ABS 1.00035,0.99965

■ Data Formats

The instrument uses "Character Data" and "Decimal value data", distinguished based on the command.

(1) Character Data

Always starts with an English alphabets and consists of alphabets and numbers. Character data is not case-sensitive, although the response messages from the instrument are only in capital letters.

SYSTem:HEADer OFF

(2) Decimal Numeric Data

Three formats are used for numeric data, identified as NR1, NR2 and NR3. Numeric values may be signed or unsigned. Unsigned numeric values are handled as positive values.

Values exceeding the precision handled by the instrument are rounded to the nearest valid digit.

- NR1 Integer data(e.g.: +12, -23, 34)
- NR2 Fixed-point data(e.g.: +1.23, -23.45, 3.456)
- NR3 Floating-point exponential representation data (e.g.: +1.0E-2, -2.3E+4)

Formats which include these three types are called "NRf format".

The instrument accepts NRf format data.

The format of response data is specified for each command, and the data is sent in that format.

:ESE0 106

:FETCh?

+106.571

The instrument does not fully support IEEE 488.2. As much as possible, please use the data formats shown in the Reference section.

Also, avoid constructing single commands that could overflow the input buffer or output queue.

■ Compound Command Header Omission

When several commands having a common header are combined to form a compound command (e.g., `:CALCulate:LIMIT:REFERENCE` and `:CALCulate:LIMIT:PERCent`), if they are written together in sequence, the common portion (here, `:CALCulate:LIMIT:`) can be omitted after its initial occurrence.

This common portion is called the "current path" and, until it is cleared, the interpretation of subsequent commands assumes that they share the same common portion (in which the "current path" has been omitted).

This usage of the current path is shown in the following example:

Full expression

```
:CALCulate:LIMIT:REFERENCE
1.0E+3;:CALCulate:LIMIT:PERCent 1.0,-1.5
```

Compacted expression

```
:CALCulate:LIMIT:REFERENCE 1.0E+3;PERCent 1.0,-1.5
```

↑
This portion becomes the current path, and can be omitted from the messages immediately following.

The current path is cleared when the power is turned on, when reset by key input, by a colon ":" at the start of a command, and when a message terminator is detected.

Standard command messages can be executed regardless of the current path.

They have no effect upon the current path.

A colon ":" is not required at the start of the header of a Simple or Compound command. However, to avoid confusion with abbreviated forms and operating mistakes, we recommend that a colon is always placed at the start of a header.

Output Queue and Input Buffer

■ Output Queue

Response messages are stored in the output queue until read by the controller and then cleared. The output queue is also cleared in the following cases:

- Power on
- Device clear
- Query error

The output queue capacity of the instrument is 64 bytes. If response messages overflow the buffer, a query error is generated and the output queue is cleared.

Also, with GP-IB, if a new message is received while data remains in the output queue, the output queue is cleared and a query error is generated.

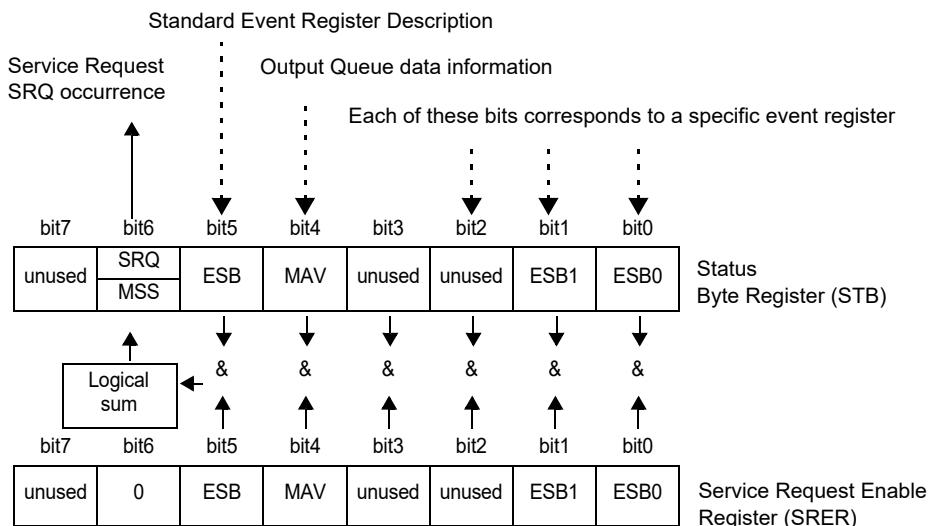
■ Input Buffer

The input buffer capacity of the instrument is 256 bytes.

If 256 bytes are accumulated in the buffer and it becomes full, the GP-IB interface bus enters the waiting state until space is cleared in the buffer.

The RS-232C interface cannot accept data beyond 256 bytes.

NOTE


Ensure that the commands are maintained below 256 bytes.

Status Byte Register

This instrument implements the status model defined in IEEE 488.2 for the serial poll function using the service request line.

The term "event" refers to any occurrence that generates a service request.

Overview of Service Request Occurrence

The Status Byte Register contains information about the event registers and the output queue. Required items are selected from this information by masking with the Service Request Enable Register. When any bit selected by the mask is set, bit 6 (MSS; the Master Summary Status) of the Status Byte Register is also set, which generates an SRQ (Service Request) message and dispatches a service request.

NOTE

SRQ (Service Request) is a GP-IB function only.

However, STB (Status Byte Register) information can be acquired with RS-232C using the ***STB?** command.

RS-232C does not provide a function for issuing service requests. However, SRER setup and STB reading are enabled.

■ Status Byte Register (STB)

During serial polling, the contents of the 8-bit Status Byte Register are sent from the instrument to the controller.

When any Status Byte Register bit enabled by the Service Request Enable Register has switched from 0 to 1, the MSS bit becomes 1. Consequently, the SRQ bit is set to 1, and a service request is dispatched.

The SRQ bit is always synchronous with service requests, and is read and simultaneously cleared during serial polling. Although the MSS bit is only read by an ***STB?** query, it is not cleared until a clear event is initiated by the ***CLS** command.

Bit 7	unused
Bit 6	SRQ Set to 1 when a service request is dispatched. MSS This is the logical sum of the other bits of the Status Byte Register.
Bit 5	ESB Standard Event Status (logical sum) bit This is the logical sum of the Standard Event Status Register.
Bit 4	MAV Message available Indicates that a message is present in the output queue.
Bit 3	unused
Bit 2	unused
Bit 1	ESB1 Event Summary (logical sum) bit 1 This is the logical sum of Event Status Register 1.
Bit 0	ESB0 Event Summary (logical sum) bit 0 This is the logical sum of Event Status Register 0.

■ Service Request Enable Register (SRER)

This register masks the Status Byte Register. Setting a bit of this register to 1 enables the corresponding bit of the Status Byte Register to be used.

Event Registers

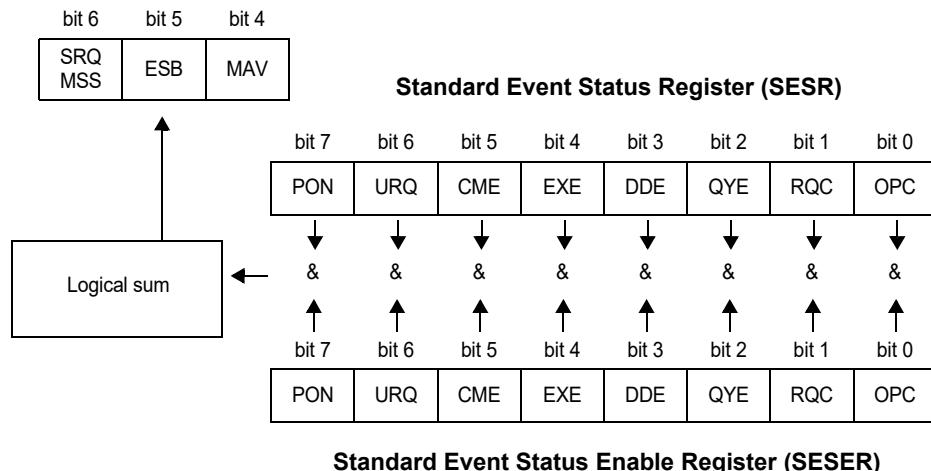
■ Standard Event Status Register (SESR)

The Standard Event Status Register is an 8-bit register.

If any bit in the Standard Event Status Register is set to 1 (after masking by the Standard Event Status Enable Register), bit 5 (ESB) of the Status Byte Register is set to 1.

See: "Standard Event Status Register (SESR) and Standard Event Status Enable Register (SESER)" (p. 138)

The Standard Event Status Register is cleared in the following situations:


- When a ***CLS** command is executed
- When an event register query (***ESR?**) is executed
- When the instrument is powered on

Bit 7	PON	Power-On Flag Set to 1 when the power is turned on, or upon recovery from an outage.
Bit 6	URQ	User Request unused
Bit 5	CME	Command error (The command to the message terminator is ignored.) This bit is set to 1 when a received command contains a syntactic or semantic error: <ul style="list-style-type: none"> • Program header error • Incorrect number of data parameters • Invalid parameter format • Received a command not supported by the instrument
Bit 4	EXE	Execution Error This bit is set to 1 when a received command cannot be executed for some reason. <ul style="list-style-type: none"> • The specified data value is outside of the set range • The specified setting data cannot be set • Execution is prevented by some other operation being performed
Bit 3	(unused) DDE	Device-Dependent Error This bit is set to 1 when a command cannot be executed due to some reason other than a command error, a query error or an execution error.
Bit 2	QYE	Query Error (the output queue is cleared) This bit is set to 1 when a query error is detected by the output queue control. <ul style="list-style-type: none"> • When an attempt has been made to read an empty output queue (GP-IB only) • When the data overflows the output queue • When data in the output queue has been lost • When the next command is received while there is data in the output queue
Bit 1	RQC (unused)	Request Control
Bit 0	OPC	Operation Complete This bit is set to "1" in response to an *OPC command. <ul style="list-style-type: none"> • It indicates the completion of the operations of all messages up to the *OPC command.

■ Standard Event Status Enable Register (SESER)

Setting any bit of the Standard Event Status Enable Register to 1 enables access to the corresponding bit of the Standard Event Status Register.

Standard Event Status Register (SESR) and Standard Event Status Enable Register (SESER)

■ Device-Specific Event Status Registers (ESR0 and ESR1)

This instrument provides two event status registers for controlling events. Each event register is an 8-bit register.

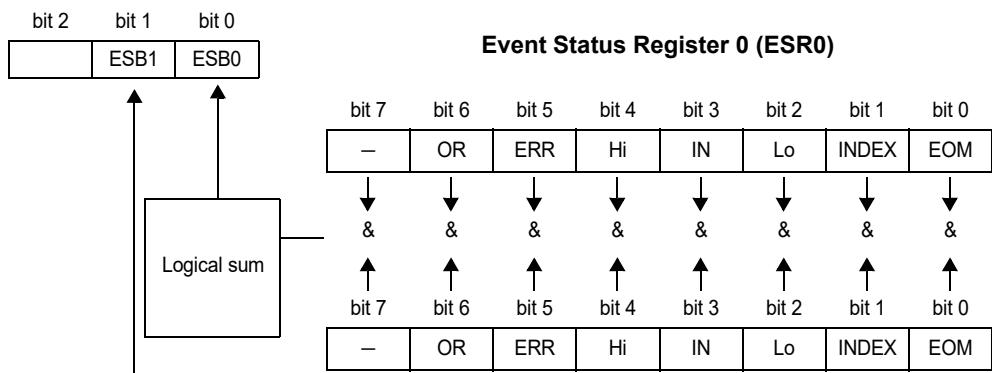
When any bit in one of these event status registers enabled by its corresponding event status enable register is set to 1, the following happens:

- In case of Event Status Register 0:
Status Byte Register (STB) bit 0 (ESB0) is "1".
- In case of Event Status Register 1:
Status Byte Register (STB) bit 1 (ESB1) is "1".

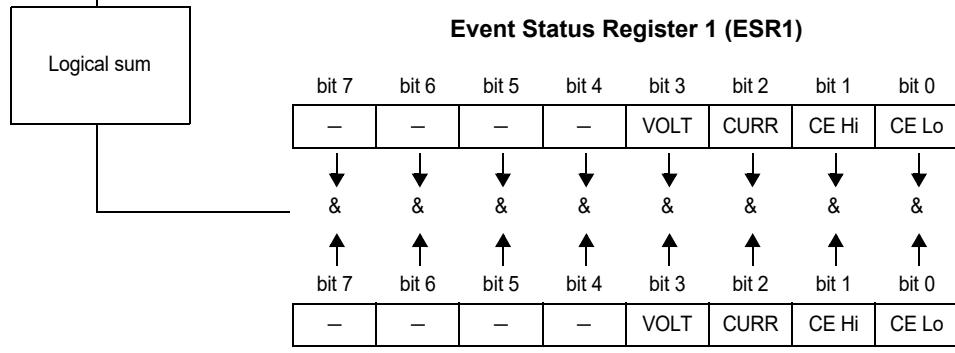
Event Status Registers 0 and 1 are cleared in the following situations:

- When a ***CLS** command is executed.
- When an Event Status Register query is executed.
(**:ESR0?**, **:ESR1?**)
- When the instrument is powered on.

Event Status Register 0 (ESR0)


Bit 7	—	unused
Bit 6	OvrRng	Out-of-Range Detection Fault
Bit 5	ERR	Measurement faults
Bit 4	Hi	High Comparator Result
Bit 3	IN	IN Comparator Result
Bit 2	Lo	Low Comparator Result
Bit 1	INDEX	A/D Conversion Finished
Bit 0	EOM	End of Measurement

Event Status Register 1 (ESR1)


Bit 7	—	unused
Bit 6	—	unused
Bit 5	—	unused
Bit 4	—	unused
Bit 3	VOLT	Voltage Monitor fault
Bit 2	CURR	Current Monitor Fault
Bit 1	CE Hi	Contact Check Hi side Fault
Bit 0	CE Lo	Contact Check Lo Side Fault

Event Status Register 0 (ESR0), 1 (ESR1) and Event Status Enable Register 0 (ESER0), 1 (ESER1)

Status Byte Register (STB)

Event Status Enable Register 0 (ESER0)

Event Status Enable Register 1 (ESER1)

■ Register Reading and Writing

Register	Read	Write
Status Byte Register	*STB?	—
Service Request Enable Register	*SRE?	*SRE
Standard Event Status Register	*ESR?	—
Standard Event Status Enable Register	*ESE?	*ESE
Event Status Register 0	:ESR0?	—
Event Status Enable Register 0	:ESE0?	:ESE0
Event Status Register 1	:ESR1?	—
Event Status Enable Register 1	:ESE1?	:ESE1

■ GP-IB Commands

The following commands can be used for performing interface functions.

Command	Description
GTL	Go To Local Cancels the Remote state and enters the Local state.
LLO	Local Lock Out Disables all keys, including the Local (F1) key.
DCL	Device CLeAr Clears the input buffer and the output queue.
SDC	Selected Device Clear Clears the input buffer and the output queue.
GET	Group Execute Trigger When an external trigger occurs, sampling is processed once.

Initialization Items

Item	Initialization Method	Power source When powered on	Keys Reset	*RST Command	Device Clear (GP-IB only)	*CLS Command	Factory Default
GP-IB Address	—	1	—	—	—	—	1
RS-232C setting (communication speed)	—	9600	—	—	—	—	9600
Device-specific functions (Range, etc.)	—	●	●	—	—	●	●
Output Queue	●	●	—	●	—	●	●
Input buffer	●	●	—	●	—	—	●
Status Byte Register	●	●	—	— *1	● *2	●	●
Event registers	● *3	●	—	—	●	●	●
Enable register	●	●	—	—	—	—	●
Current path	●	●	—	●	—	—	●
Headers ON/OFF	OFF	OFF	OFF	—	—	—	OFF
Response message terminator (GP-IB)	LF+EOI	LF+EOI	—	—	—	—	LF+EOI
Response message separator	;	;	;	—	—	—	;

*1. Only the MAV bit (bit 4) is cleared.

*2. All bits except the MAV bit are cleared.

*3. Except the PON bit (bit 7).

Command Execution Time

Command execution time indicates the time for analyzing and processing long form commands.

However, the command execution time for commands with data is the time described according to the data format specified in the <data portion>, and for query commands it is the time when the header is ON.

- Display delays may occur depending on the frequency of communication processes and process contents.
- All commands except ***TRG** and **:INIT** are processed sequentially.
- In communications with the controller, time must be added for data transmission. GP-IB transfer time depends on the controller.

The time for the RS-232C transfers for a total of 10 bits (the start bit is 1, the data length is 8, no parity, the stop bit is 1) is shown below.

9600 bps: approximately 960 characters/s

- Wait until measurements stabilize after a change before using a setting command.

Command	Execution time (except communication time)
*RST	200 ms or less
:FUNCTION	
:RESistance:RANGE	
:LPResistance:RANGE	
:SPEED	
:SYSTem:CALibration	150 ms or less
:RESistance:APERture	
:LPResistance:APERture	
:RESistance:NPLCycles	
:LPResistance:NPLCycles	
:ADJust?	2 s or less
:FETCh?	3 ms or less
:READ?	Measurement time + 3 ms or less
:SYSTem:BACKup	200 ms or less
*TST?	1 s or less
Commands other than those above	10 ms or less

Errors During Communications

An error occurs when messages are executed in the following cases:

- Command Error**

When message syntax (spelling) is invalid. When the data format in a command or query is invalid.

- Query error**

When the response message exceeds 64 bytes.

- Execution Error**

When invalid character or numeric data is present.

9.6 Message List

Commands specific to RS-232C or GP-IB are identified by **RS-232C** or, **GP-IB** respectively.

Shared Commands

Message	Data Formats	Description	Ref page
*CLS		Clears the event registers and the Status Byte Register.	153
*ESE	0 to 255	Sets the contents of the Standard Event Status Enable Register.	154
*ESE?	[0 to 255]	Queries the Standard Event Status Enable Register.	154
*ESR?	[0 to 255]	Queries the Standard Event Status Register.	154
*IDN?	[<Manufacturer's name>,<Model name>,0,<Software version>]	Queries the Device ID.	152
*OPC		Requests an SRQ after execution completion.	153
*OPC?	1	Queries execution completion.	153
*RST		Initialize Device	152
*SRE	0 to 255	Sets the Service Request Enable Register.	155
*SRE?	[0 to 255]	Queries the contents of the Service Request Enable Register.	155
*STB?	[0 to 255]	Queries the Status Byte Register.	155
*TRG		Executes one sampling.	155
*TST?	[0 to 7]	Initiates a self-test and queries the result.	152
*WAI		Wait for operations to finish.	153

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

Device-Specific Commands

Message	Data Formats []: Response data.	Description	Ref page
Event registers			
:ESE0	0 to 255	Sets and queries Event Status	
:ESE0?	[0 to 255]	Enable Register 0.	156
:ESR0?	[0 to 255]	Reads Device-Specific Event Status Register ESR 0.	156
:ESE1	0 to 255	Sets and queries Event Status	
:ESE1?	[0 to 255]	Enable Register 1.	156
:ESR1?	[0 to 255]	Queries Event Status Register 1.	156
Resistance Measurement			
[:SENSe:]FUNCTION	RESistance/ LPResistance	Sets and queries the resistance	
[:SENSe:]FUNCTION?	[RESISTANCE/ LPRESISTANCE]	measurement method.	157
Measurement ranges			
[:SENSe:]LPResistance:RANGE	0 to 1200	Sets and queries Low-Power	
[:SENSe:]LPResistance:RANGE?	[1000.00E-3 to 1000.00E+0]	Resistance measurement range.	157
[:SENSe:]RESistance:RANGE	0 to 120E+6	Sets and queries resistance	
[:SENSe:]RESistance:RANGE?	[10.0000E-3 to 100.0000E+6]	measurement range.	157
Zero Adjustment			
:ADJust?	[0/ 1]	Executes zero-adjustment.	158
:ADJust:CLEar		Cancels zero-adjustment.	158
Measurement Speed			
:SPEED	FAST/ MEDIUM/ SLOW	Sets and queries measurement	
:SPEED?	[FAST/ MEDIUM/ SLOW]	speed.	158
Statistical functions			
:CALCulate:STATistics:STATE	1/ 0/ ON/ OFF	Sets and queries statistical	
:CALCulate:STATistics:STATE?	[ON/ OFF]	calculation function execution.	159
:CALCulate:STATistics:CLEar		Clears statistical calculation results.	159
:CALCulate:STATistics:NUMBER?	[<Total data count>, <Valid data count>]	Queries the data count.	159
:CALCulate:STATistics:MEAN?	[<Mean>]	Queries the mean value.	159
:CALCulate:STATistics:MAXimum?	[<Maximum value>, <Data no. of Maximum value>]	Queries the maximum value.	159
:CALCulate:STATistics:MINimum?	[<Minimum value>, < Data no. of Minimum value>]	Queries the minimum value.	159
:CALCulate:STATistics:LIMit?	[<Number of Hi>, < number of IN>, < number of Lo>, < number of measurement faults>, <number of Out-of-Range measurements>]	Queries comparator results.	160
:CALCulate:STATistics:DEVIation?	[<σn>, < σn-1 >]	Queries standard deviation.	160
:CALCulate:STATistics:CP?	[<Cp>, <CpK>]	Queries the process capability indices.	160

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

9.6 Message List

Message	Data Formats []: Response data.	Description	Ref page
Comparator			
:CALCulate:LIMIT:STATE	1/ 0/ ON/ OFF	Execute and Query Comparator	160
:CALCulate:LIMIT:STATE?	[ON/ OFF]		
:CALCulate:LIMIT:BEEPer	OFF/ HI/ LO/ HL/ IN	Set and Query Beeper State	160
:CALCulate:LIMIT:BEEPer?	[OFF/ HI/ LO/ HL/ IN]		
:CALCulate:LIMIT:MODE	ABS/ REF	Set and Query Judgment Mode	161
:CALCulate:LIMIT:MODE?	[ABS/ REF]		
:CALCulate:LIMIT:ABS	<Upper threshold>,<Lower threshold>	Set and Query ABS Mode Upper/ Lower Comparator Threshold Values	161
:CALCulate:LIMIT:ABS?	<Upper threshold>,<Lower threshold>		
:CALCulate:LIMIT:REFERENCE	<Reference Resistance>	Set and Query REF% Mode Reference Resistance	161
:CALCulate:LIMIT:REFERENCE?	[<Reference Resistance>]		
:CALCulate:LIMIT:PERCent	<Upper limit value (%)>,<Lower limit value (%)>	Set and Query REF% Mode Upper/ Lower Comparator Threshold Percentages	161
:CALCulate:LIMIT:PERCent?	<Upper limit value (%)>,<Lower limit value (%)>		
:CALCulate:LIMIT:RESULT?	[HI/ IN/ LO/ OFF/ ERR]	Queries the comparator result	161
Scaling			
:CALCulate:SCALing	<1/ 0/ ON/ OFF>	Set and Query Scaling Function	162
:CALCulate:SCALing?	[ON/ OFF]		
:CALCulate:SCALing:PARameterA	<coefficient>	Set and Query Coefficient	162
:CALCulate:SCALing:PARameterA?	[0.50000 to 2.00000]		
:CALCulate:SCALing:PARameterB	<offset>	Set and Query Offset	162
:CALCulate:SCALing:PARameterB?	[-99.9999E+6 to 99.9999E+6]		
Self-Calibration			
:SYSTem:CALibration		Execute Self-Calibration	163
:SYSTem:CALibration:AUTO	1/ 0/ ON/ OFF	Set and Query Self-Calibration Execution State	163
:SYSTem:CALibration:AUTO?	[ON/ OFF]		
Key Beeper			
:SYSTem:BEEPer:STATE	1/ 0/ ON/ OFF	Set and Query the Key Beeper Setting	163
:SYSTem:BEEPer:STATE?	[ON/ OFF]		
Line Frequency			
:SYSTem:LFREquency	AUTO/ 50/ 60	Set and Query the Line Frequency Setting	163
:SYSTem:LFREquency?	[AUTO/ 50/ 60]		
Key-Lock			
:SYSTem:KLOCK	1/ 0/ ON/ OFF	Set and Query the Key-Lock State	164
:SYSTem:KLOCK?	[ON/ OFF]		
Header Present			
:SYSTem:HEADER	1/ 0/ ON/ OFF	Set and Query the Header Present Setting	164
:SYSTem:HEADER?	[ON/ OFF]		
EOM Output			
:SYSTem:EOM:MODE	HOLD/ PULSe	Set and Query the EOM Output Method	164
:SYSTem:EOM:MODE?	[HOLD/ PULSE]		
:SYSTem:EOM:PULSe	0.001 to 0.100	Set and Query the EOM Pulse Width Setting	164
:SYSTem:EOM:PULSe?	[0.001 to 0.100]		

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

Message	Data Formats [: Response data.]	Description	Ref page
:SYSTem:STAGe	<1/ 2/ OFF>	Stage mismatch prevention function	
:SYSTem:STAGe?	[1/ 2/ OFF]	settings and queries.	165
Delimiter (Terminator)			
:SYSTem:TERMinator	GP-IB 0/ 1	Sets and queries the GP-IB com- mand delimiter.	165
:SYSTem:TERMinator?	GP-IB [0/ 1]		
System			
:SYSTem:DATE	<Year>,< Month>,< Day>	Sets and queries the system date.	165
:SYSTem:DATE?	[<Year>,< Month>,< Day>]		
:SYSTem:TIME	<Hours>,< Minutes>, < Seconds>		
:SYSTem:TIME?	[<Hours>,< Minutes>, < Seconds>]	Sets and queries the system time.	165
:SYSTem:BACKup		Backs up measurement settings.	166
:SYSTem:SETMonitor	1/ 0/ ON/ OFF	Sets and queries the Settings Moni- tor function.	166
:SYSTem:SETMonitor?	[ON/ OFF]		
:SYSTem:SETMonitor:ORDer	1/ 2	Sets and queries the 1st/2nd stage setting conditions (Settings Monitor function).	166
:SYSTem:SETMonitor:ORDer?	[1/ 2]		
:SYSTem:SETMonitor:ALLOWance	0 to 9.999(%)	Sets and queries the tolerance range (Settings Monitor function).	166
:SYSTem:SETMonitor:ALLOWance?	[0 to 9.999]		
:SYSTem:LOCal		Enables the local control state.	166
:SYSTem:DATAout	RS-232C 1/ 0/ ON/ OFF	Sets and queries measurement-syn- chronized data output.	166
:SYSTem:DATAout?	RS-232C [ON/ OFF]		
:SYSTem:FORMAT	ASCII/ BINary	Sets and queries the measurement data format.	167
:SYSTem:FORMAT?	[ASCII/ BINARY]		
:SYSTem:4WCHeck	1/ 0/ ON/ OFF	Sets and queries probe short-circuit detection.	167
:SYSTem:4WCHeck?	[ON/ OFF]		
:SYSTem:4WCHeck:TIME	0.001 to 0.1	Sets and queries probe short-circuit detection time.	167
:SYSTem:4WCHeck:TIME?	[0.001 to 0.1]		
:SYSTem:RETRY	1/ 0/ ON/ OFF	Enables the measurement retry function.	167
:SYSTem:RETRY?	[ON/ OFF]		
:SYSTem:RETRY:TIME	0.001 to 0.05 (Seconds)	Measurement retry duration setting and query.	167
:SYSTem:RETRY:TIME?	[0.001 to 0.05]		
:SYSTem:VOLTLimit	0/ 1/ ON/ OFF	Sets and queries the applied voltage limit function.	168
:SYSTem:VOLTLimit?	[ON/OFF]		
:SYSTem:PERCent	1/ 0/ ON/ OFF	Set and Query the percentage out- put function	168
:SYSTem:PERCent?	[ON/OFF]		
:SYSTem:SERIAL?	[<Serial Number>]	Query the Serial Number	168
:SYSTem:RESET		Executes a system reset.	168

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

9.6 Message List

Message	Data Formats []: Response data.	Description	Ref page
Trigger			
:INITiate:CONTinuous	1/0/ ON/ OFF	Sets and queries continuous measurement.	170
:INITiate:CONTinuous?	[ON/ OFF]		
:INITiate[:IMMediate]		Trigger Wait Setting	170
:TRIGger:SOURce	IMMediate/ EXTernal	Sets and queries the trigger source.	170
:TRIGger:SOURce?	[IMMEDIATE/ EXTERNAL]		
:TRIGger:DELay1	0 to 0.100	Sets and queries Trigger Delay 1 time.	171
:TRIGger:DELay1?	[0 to 0.100]		
:TRIGger:EDGE	RISE/ FALL	Sets and queries trigger (falling (ON)/ rising (OFF)) logic.	171
:TRIGger:EDGE?			
Reading Measurement Values			
:FETCH?	[<Measurement value>]	Reads the most recent measurement.	172
:READ?	[<Measurement value>]	Waits for trigger and reads the measurement value.	172
Memory Function			
:MEMORY:MODE	OFF/ MEMory/ AUTO	Sets and queries the memory mode.	173
:MEMORY:MODE?	[OFF/ MEMORY/ AUTO]		
:MEMORY:CLEar		Clears memory data.	173
:MEMORY:COUNT?	[0 to 30000]	Queries the number of measurements stored in memory.	173
:MEMORY:DATA?	[<Measurement value>, <measurement value>, ..., <measurement value>]	Reads the measurements stored in the memory.	174
:MEMORY:POINT	1 to 30000	Sets and queries the number of measurement points to store.	174
:MEMORY:POINT?	[1 to 30000]		
Setting Printing Method			
:PRINTER:MODE	NORMal/SAMPLE	Sets and queries the printing method.	175
:PRINTER:MODE?	[NORMAL/SAMPLE]		
:PRINTER:SAMPLE:NUMBER	1 to 999	Sets and queries of the number of samples for sample printing.	175
:PRINTER:SAMPLE:NUMBER?	[1 to 999]		
:PRINTER:SAMPLE:CONDITION	ALL/IN	Sets and queries the sample printing conditions.	175
:PRINTER:SAMPLE:CONDITION?	[ALL/IN]		
:PRINTER:SAMPLE:LINE	1/3	Sets and queries the number of data for the sample printing.	175
:PRINTER:SAMPLE:LINE?	[1/3]		

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

Message	Data Formats []: Response data.	Description	Ref page
Range-Specific Resistance Measurement Settings (Resistance Measurement Settings)			
:Resistance:DELay2	<Range>,< Delay 2 time>		
:Resistance:DELay2?	<Range> [0 to 0.100]	Sets and queries Delay 2 time.	176
:Resistance:NPLCycles	<Range>,<Speed>, <Integration time (NPLC)>	Sets and queries integration time	
:Resistance:NPLCycles?	<Range>,<Speed> [0.01 to 6]	(multiples of power line cycles).	176
:PResistance:APERture	<Range>,<Speed>, <integration time (s)>	Sets and queries integration time	
:Resistance:APERture?	<Range>,<Speed> [0.0001 to 0.1]	(in seconds).	177
:Resistance:CIMProve	<Range>,<OFF/ HOLD/ PULSE>	Sets and queries contact improver	
:Resistance:CIMProve?	<Range> [OFF/ HOLD/ PULSE]	operating mode.	177
:Resistance:CIMProve:LEVel	<Range>,<Level>	Sets and queries contact improver	
:Resistance:CIMProve:LEVel?	<Range> [L1/ L2/ L3/ L4]	level.	177
:Resistance:CURRent	<Range>,<PULSe/CON- Tinuous>	Sets and queries measurement	
:Resistance:CURRent?	<Range> [PULSE/ CONTINUOUS]	current mode.	178
:Resistance:CONTACTcheck	<Range>,<1/ 0/ ON/ OFF>	Sets and queries contact check	
:Resistance:CONTACTcheck?	<Range> [ON/ OFF]	operation.	178
:Resistance:CONTACTcheck:LEVel	<Range>,<Level>	Sets and queries contact check	
:Resistance:CONTACTcheck:LEVel?	<Range> [L1/ L2/ L3/ L4/ L5/ L6/ L7]	threshold.	179
:Resistance:VMONitor	<Range>,<1/ 0/ ON/ OFF>	Sets and queries voltage level monitor	
:Resistance:VMONitor?	<Range> [ON/ OFF]	level.	179
:Resistance:VMONitor:LEVel	<Range>,<Level>	Sets and queries voltage level monitor	
:Resistance:VMONitor:LEVel?	<Range> [L1/ L2/ L3]	level.	179

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.
- <Range>
For **:RESistance** commands: RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG
For **:LPRResistance** commands: RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000

Message	Data Formats []: Response data.	Description	Ref page
Range-Specific Resistance Measurement Settings (Low Power Resistance Measurement Settings)			
:LPResistance:DElay2	<Range>,< Delay 2 time>		
:LPResistance:DElay2?	<Range> [0 to 0.100]	Sets and queries Delay 2 time.	176
:LPResistance:NPLCycles	<Range>,<Speed>, <Integration time (NPLC)>	Sets and queries integration time	176
:LPResistance:NPLCycles?	<Range>,<Speed> [0.01 to 6]	(multiples of power line cycles).	
:LPResistance:APERture	<Range>,<Speed>, <integration time (s)>	Sets and queries integration time	177
:LPResistance:APERture?	<Range>,<Speed> [0.0001 to 0.1]	(in seconds).	
:LPResistance:CIMProve	<Range>,<OFF/ HOLD/ PULSe>	Sets and queries contact improver	177
:LPResistance:CIMProve?	<Range> [OFF/ HOLD/ PULSE]	operating mode.	
:LPResistance:CIMProve:LEVel	<Range>,<Level>	Sets and queries contact improver	177
:LPResistance:CIMProve:LEVel?	<Range> [L1/ L2/ L3/ L4]	level.	
:LPResistance:CURRent	<Range>,<PULSe/CON- Tinuous>	Sets and queries measurement	178
:LPResistance:CURRent?	<Range> [PULSE/ CONTINUOUS]	current mode.	
:LPResistance:CONTACTcheck	<Range>,<1/ 0/ ON/ OFF>	Sets and queries contact check	178
:LPResistance:CONTACTcheck?	<Range> [ON/ OFF]	operation.	
:LPResistance:CONTACTcheck:LEVel	<Range>,<Level>	Sets and queries contact check	179
:LPResistance:CONTACTcheck:LEV- el?	<Range> [L1/ L2/ L3/ L4/ L5/ L6/ L7]	threshold.	
:LPResistance:VMONitor	<Range>,<1/ 0/ ON/ OFF>	Sets and queries voltage level monitor	179
:LPResistance:VMONitor?	<Range> [ON/ OFF]	level.	
:LPResistance:VMONitor:LEVel	<Range>,<Level>	Sets and queries voltage level monitor	179
:LPResistance:VMONitor:LEVel?	<Range> [L1/ L2/ L3]	level.	

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

<Range>

For **:RESistance** commands: RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG

For **:LPResistance** commands: RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000

Message	Data Formats []: Response data.	Description	Ref page
Jumper Resistance Measurement Support Function			
:SYSTem:RANGElimit	1/ 0/ ON/ OFF	Jumper resistance measurement support function setting and query.	180
:SYSTem:RANGElimit?	[ON/OFF]		
:SYSTem:RANGElimit:RANGE	0 to 120	Jumper resistance measurement support function lower limit value setting	180
:SYSTem:RANGElimit:RANGE?	[1000.000E-3/ 10.0000E+0/ 100.0000E+0]	and query.	
Preset Function			
:SYSTem:PRESet		Saving instrument settings.	180
ΔR Function			
:SYSTem:DELTar	<1/ 0/ ON/ OFF>	ΔR function setting and query.	180
:SYSTem:DELTar?	[ON/OFF]		
:SYSTem:DELTar:STAGE	<1/2>	Stage setting and query.	180
:SYSTem:DELTar:STAGE?	[1/2]		
:SYSTem:DELTar:SHIFT	<1 to 99>	Stage number setting and query.	181
:SYSTem:DELTar:SHIFT?	[1 to 99]		
:SYSTem:DELTar:FCNT	<1 to 10>	FAIL judgment count setting and	181
:SYSTem:DELTar:FCNT?	[1 to 10]	query.	
:SYSTem:DELTar:LIMit	<0.0000 to 99.9990>(%)	First- and second-stage tolerance setting and query.	181
:SYSTem:DELTar:LIMit?	[0.0000E+0 to 99.9990E+0]		
:SYSTem:DELTar:TR2Ng	<1/ 0/ ON/ OFF>	Second-stage testing method setting and query (when first-stage judgment is high or low).	181
:SYSTem:DELTar:TR2Ng?	[ON/OFF]		
:SYSTem:DELTar:TR2Error	<1/ 0/ ON/ OFF>	Second-stage testing method setting and query (when first-stage judgment is ERR).	181
:SYSTem:DELTar:TR2Error?	[ON/OFF]		
:SYSTem:DELTar:CLEAR		Clearing the first-stage measured value.	181
Average Function			
:RESistance:AVERage:STATE	<Range>,<1/ 0/ ON/ OFF>		
:RESistance:AVERage:STATE?<Range>	[ON/OFF]	Average function setting and query.	182
:RESistance:AVERage:NUMBER	<Range>,<2 to 32>		
:RESistance:AVERage:NUMBER?<Range>	[2 to 32]	Average count setting and query.	182
Average Function (Low Power Resistance Measurement Settings)			
:LPRESistance:AVERage:STATE	<Range>,<1/0/ON/OFF>		
:LPRESistance:AVERage:STATE?<Range>	[ON/OFF]	Average function setting and query.	182
:LPRESistance:AVERage:NUMBER	<Range>,<2 to 32>		
:LPRESistance:AVERage:NUMBER?<Range>	[2 to 32]	Average count setting and query.	182

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

9.6 Message List

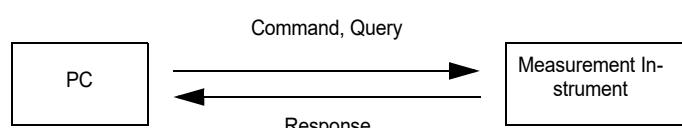
Message	Data Formats []: Response data.	Description	Ref page
BIN Measurement Function			
:CALCulate:LIMIT:STATE	<2/1/0/BIN/ON/OFF>	BIN measurement function settings	183
:CALCulate:LIMIT:STATE?	[BIN/ON/OFF]	and queries	
:CALCulate:BIN:STATE	<1/0/ON/OFF>	Judgment stage setting and query.	183
:CALCulate:BIN:STATE?	[ON/OFF]		
:CALCulate:BIN:ENABLE	<Usable pattern>	Usable pattern setting and query.	183
:CALCulate:BIN:ENABLE?	[0 to 127]		
:CALCulate:BIN:REFERENCE	<Reference Resistance>(Ω)	Reference resistance value setting	183
:CALCulate:BIN:REFERENCE?	[0.0000E-3 to 120.0000E+6]	and query.	
:CALCulate:BIN:PERCent	<BINNo. >,<Upper limit value(%)>,<Lower limit value(%)>	Judgment range setting and query.	183
:CALCulate:BIN:PERCent?<BINNo. >	[-99.9900E+0 to 99.9900E+0,-99.9900E+0 to 99.9900E+0]		
:CALCulate:BIN:RESult?	[0 to 128]	Judgment result query.	183
:CALCulate:BIN:DISPLAY	<1/0/ON/OFF>	Judgment result display setting and	183
:CALCulate:BIN:DISPLAY?	[ON/OFF]	query.	

Notes:

- < >: indicates contents of the data portion.
- []: indicates Response data.

9.7 Message Reference

Messages specific to the RS-232C or GP-IB interface are denoted by **RS-232C** or **GP-IB**.


Message Reference Interpretation

< >: Indicates the contents (character or numeric parameters) of the data portion of a message.
Character parameters are returned as all capital letters.

Numeric Parameters:

- NRf Number format may be represented by any of the following: NR1, NR2 and NR3.
- NR1 Integer data (e.g.: +12, -23, 34)
- NR2 Fixed-point data (e.g.: +1.23, -23.45, 3.456)
- NR3 Floating-point exponential representation data (e.g.: +1.0E-2, -2.3E+4)

Shows the command description.	→	Read/Write the Standard Event Status Enable Register (SESER)									
Shows the message syntax. Explains the command data or response message.	→	Syntax Command *ESE <0 to 255 (NR1)> Query *ESE? Response <0 to 255 (NR1)>	←								
Describes the message.	→	Description Command The SESER mask is set to the numerical value 0 to 255. The initial value (at power-on) is 0. Query *The contents of the SESER, as set by the *ESE command, are returned as an NR1 value (0 to 255).									
Shows an example of an actual command application. Gives a description (excluding the HEADER command) for the case where HEADER is normally ON.	→	Example *ESE 36 (Sets bits 5 and 2 of SESER)									
		128 64 32 16 8 4 2 1 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 <table border="1"> <tr> <td>PON</td> <td>URQ</td> <td>CME</td> <td>EXE</td> <td>DDE</td> <td>QYE</td> <td>RQC</td> <td>OPC</td> </tr> </table>		PON	URQ	CME	EXE	DDE	QYE	RQC	OPC
PON	URQ	CME	EXE	DDE	QYE	RQC	OPC				

Shared Commands

Messages specific to the RS-232C or GP-IB interface are denoted by **RS-232C** or **GP-IB**.

(1) System Data Command

Query the Device ID (Identification Code)

Syntax	Query *IDN?
Response	<Manufacturer's name>, <Model name>, <Serial Number>, <Software version>
Example	HIOKI, RM3542C-1, 251112345, v1.00 The Device ID is HIOKI RM3542C-1, Serial Number 251112345, software version: 1.00.
Note	The response message has no header.

(2) Internal Operation Command

Initialize Device

Syntax	Command *RST
Description	Command Resets the instrument to its initial state.
Note	<ul style="list-style-type: none"> The communications protocol is not initialized. Initialized settings are not backed up. The following methods are available if backup is needed: <ul style="list-style-type: none"> Method1. Use the :SYSTem:BACKup command Method2. Use the :SYSTem:RESet command

Execute Self-Test and Query the Result

Syntax	Query *TST?																								
Response	<0 to 7 (NR1)>																								
	<table> <tr> <td>128</td> <td>64</td> <td>32</td> <td>16</td> <td>8</td> <td>4</td> <td>2</td> <td>1</td> </tr> <tr> <td>bit 7</td> <td>bit 6</td> <td>bit 5</td> <td>bit 4</td> <td>bit 3</td> <td>bit 2</td> <td>bit 1</td> <td>bit 0</td> </tr> <tr> <td>unused</td> <td>unused</td> <td>unused</td> <td>unused</td> <td>unused</td> <td>non-volatile memory</td> <td>RAM</td> <td>ROM</td> </tr> </table>	128	64	32	16	8	4	2	1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	unused	unused	unused	unused	unused	non-volatile memory	RAM	ROM
128	64	32	16	8	4	2	1																		
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0																		
unused	unused	unused	unused	unused	non-volatile memory	RAM	ROM																		

Description	Perform the instrument self-test and return the result as a numerical value from 0 to 7. Returns zero when no error occurs.
--------------------	--

Example	*TST? 4 A non-volatile memory error occurred. Correct measurement may not be possible. Obtain repair before further use.
----------------	---

(3) Synchronization Commands

Set the OPC bit of SESR When Finished All Pending Operations

Syntax Command ***OPC**

Description Sets the OPC (bit 0) of the Standard Event Status Register (SESR) when the commands transmitted prior to the *OPC commands of all the commands have finished processing.

Respond to output queue with ASCII 1 when all pending operations have finished

Syntax Query ***OPC?**
 Response **1**

Description Responds with ASCII 1 when the commands transmitted prior to the *OPC commands of all the commands have finished processing.

Execute continuous command after command processing

Syntax Command ***WAI**

Description The instrument waits until all prior commands finish before executing any subsequent commands.

Note The *WAI command is supported because it is defined in IEEE 488.2-1987, but because all device-specific commands are sequential types, this command has no actual effect even if the *WAI command is used.

(4) Status and Event Control Commands

Clear the Status Byte and Related Queues (Except the Output Queue)

Syntax Command ***CLS**

Description Clears the event status registers. The Status Byte Register bits corresponding to the event status registers are also cleared. (SESR, ESR0, ESR1)

Note The output queue is unaffected.

 The Output Queue, Enable Register and the Status Byte MAV (bit 4) are unaffected.

Read/Write the Standard Event Status Enable Register (SESER)

Syntax	Command	*ESE <0 to 255 (NR1)>
	Query	*ESE?
	Response	<0 to 255 (NR1)>
Description	Command	The SESER mask is set to the numerical value 0 to 255. The initial value (at power-on) is 0. ("Detailed Settings Screen" (p. 21))
	Query	The contents of the SESER, as set by the *ESE command, are returned as an NR1 value (0 to 255).

128 bit 7	64 bit 6	32 bit 5	16 bit 4	8 bit 3	4 bit 2	2 bit 1	1 bit 0
PON	URQ	CME	EXE	DDE	QYE	RQC	OPC

Example	*ESE 36
(Sets bits 5 and 2 of SESER)	

Read and Clear the Standard Event Status Register (SESR)

Syntax	Query	*ESR?
	Response	<0 to 255 (NR1)>

Description	Returns the contents of the SESR as an NR1 value from 0 to 255, then clears register contents. The response message has no header.
--------------------	---

RS-232C	128 bit 7	64 bit 6	32 bit 5	16 bit 4	8 bit 3	4 bit 2	2 bit 1	1 bit 0
	PON	unused	CME	EXE	DDE	QYE	unused	unused

GP-IB	128 bit 7	64 bit 6	32 bit 5	16 bit 4	8 bit 3	4 bit 2	2 bit 1	1 bit 0
	PON	URQ	CME	EXE	DDE	QYE	RQC	OPC

Example	*ESR?
	32

Bit 5 of the SESR was set to 1.

Write and Read the Service Request Enable Register (SRER)

Syntax	Command	*SRE <0 to 255 (NR1)>																								
	Query	*SRE?																								
	Response	<0 to 255 (NR1)>																								
Description	Command	The SRER mask is set to the numerical value 0 to 255. Although NRf numerical values are accepted, values to the right of the decimal are rounded to the nearest integer. Bit 6 and unused bits 2, 3 and 7 are ignored. The data is initialized to zero at power-on.																								
	Query	The contents of the SRER, as set by the *SRE command, are returned as an NR1 value (0 to 255). Bit 6 and unused bits 2, 3 and 7 are always returned as zero.																								
		<table border="1"> <tr> <td>128</td> <td>64</td> <td>32</td> <td>16</td> <td>8</td> <td>4</td> <td>2</td> <td>1</td> </tr> <tr> <td>bit 7</td> <td>bit 6</td> <td>bit 5</td> <td>bit 4</td> <td>bit 3</td> <td>bit 2</td> <td>bit 1</td> <td>bit 0</td> </tr> <tr> <td>unused</td> <td>0</td> <td>ESB</td> <td>MAV</td> <td>unused</td> <td>unused</td> <td>ESE1</td> <td>ESE0</td> </tr> </table>	128	64	32	16	8	4	2	1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	unused	0	ESB	MAV	unused	unused	ESE1	ESE0
128	64	32	16	8	4	2	1																			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0																			
unused	0	ESB	MAV	unused	unused	ESE1	ESE0																			

Example ***SRE 33**

Set SRER bits 0 and 5 to 1.

***SRE?**

33

SRER bits 0 and 5 have been set to 1.

Read the Status Byte and MSS Bit

Syntax	Query	*STB?																								
	Response	<0 to 255 (NR1)>																								
Description		The contents of the STB are returned as an NR1 value (0 to 255). The response message has no header.																								
		<table border="1"> <tr> <td>128</td> <td>64</td> <td>32</td> <td>16</td> <td>8</td> <td>4</td> <td>2</td> <td>1</td> </tr> <tr> <td>bit 7</td> <td>bit 6</td> <td>bit 5</td> <td>bit 4</td> <td>bit 3</td> <td>bit 2</td> <td>bit 1</td> <td>bit 0</td> </tr> <tr> <td>unused</td> <td>MSS</td> <td>ESB</td> <td>MAV</td> <td>unused</td> <td>unused</td> <td>ESE1</td> <td>ESE0</td> </tr> </table>	128	64	32	16	8	4	2	1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	unused	MSS	ESB	MAV	unused	unused	ESE1	ESE0
128	64	32	16	8	4	2	1																			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0																			
unused	MSS	ESB	MAV	unused	unused	ESE1	ESE0																			

Example ***STB?**

16

STB bit 4 has been set to 1.

9

Request a Sample

Syntax	Command	*TRG
Description		Performs one measurement when external triggering is enabled. When Statistical Calculation is ON, calculation data is exported. When the memory function is ON, the measurement value is stored.
Example	:TRIGger:SOURce EXTerinal;*TRG	
Note	When an error occurs with the Settings Monitor function enabled, triggering is disabled (p. 64).	

Device-Specific Commands

(1) Event Status Register

Set and Query Device-Specific Event Status Enable Register ESER0

Syntax Command **:ESE0 <0 to 255 (NR1)>**

Query **:ESE0?**

Response <0 to 255 (NR1)>

Description Command Sets a usable pattern in Event Status Enable Register 0 (ESER0) for the Event Status Register.

128 bit 7	64 bit 6	32 bit 5	16 bit 4	8 bit 3	4 bit 2	2 bit 1	1 bit 0
Unused	OR	ERR	Hi	IN	Lo	INDEX	EOM

Note Data initializes to zero at power-on.

Read Device-Specific Event Status Register ESR0

Syntax Query **:ESR0?**

Response <0 to 255 (NR1)>

Note Executing ESR0? clears the contents of ESR0.

Set and Query Device-Specific Event Status Enable Register ESER1

Syntax Command **:ESE1 <0 to 255 (NR1)>**

Query **:ESE1?**

Response <0 to 255 (NR1)>

Description Command Sets a usable pattern in the Event Status Enable Register 1 (ESER1) for the Event Status Register.

128 bit 7	64 bit 6	32 bit 5	16 bit 4	8 bit 3	4 bit 2	2 bit 1	1 bit 0
unused	unused	unused	unused	VOLT	CURR	CE Hi	CE Lo

Note Data initializes to zero at power-on.

Read Device-Specific Event Status Register ESR1

Syntax Query **:ESR1?**

Response <0 to 255 (NR1)>

Note Executing ESR1? clears the contents of ESR1.

(2) Measurement-Related

Set and Query the resistance measurement method

Syntax	Command [:SENSe:]FUNCTION <RESistance/ LPResistance>
	Query [:SENSe:]FUNCTION?
	Response <RESISTANCE/ LPRESISTANCE>
	<RESISTANCE> = Normal Resistance measurement
	<LPRESISTANCE> = Low-Power Resistance measurement
Example	FUNC LPR Selects the Low-Power Resistance measurement.
	FUNC? RESISTANCE The Resistance measurement has been selected.
Note	[:SENSe:] may be omitted.

Set and Query the Range Setting

Low-Power Resistance Measurement Range

Syntax	Command [:SENSe:]LPResistance:RANGE <Expected measurement value>
	Query [:SENSe:]LPResistance:RANGE?
	Response <Measurement ranges (NR3)>
	<Expected measurement value> = 0 to 1200
	<Measurement ranges (NR3)> = 1000.000E-3/ 3.00000E+0/ 10.00000E+0/ 100.0000E+0/ 300.000E+0/ 1000.000E+0
Description	Command Enter the expected measurement value. The instrument is set to the most suitable range for measuring the given numerical value data.
	Query Queries the measurement range setting.
Example	LPR:RANG? 10.0000E+0 The Low-Power Resistance measurement has been set to the 10 Ω range.

9

Resistance Measurement Range

Syntax	Command [:SENSe:]Resistance:RANGE <Expected measurement value>
	Query [:SENSe:]RESistance:RANGE?
	Response <Measurement ranges (NR3)>
	<Expected measurement value> = 0 to 120E+6
	<Measurement ranges (NR3)> = 10.00000E-3/ 100.0000E-3/ 1000.000E-3/ 3.00000E+0/ 10.00000E+0/ 100.0000E+0/ 300.000E+0/ 1000.000E+0/ 10.00000E+3/ 30.00000E+3/ 100.0000E+3/ 300.000E+3/ 1000.000E+3/ 3.00000E+6/ 10.00000E+6/ 30.0000E+6/ 100.0000E+6
Description	Command Enter the expected measurement value. The instrument is set to the most suitable range for measuring the given numerical value data.
	Query Queries the measurement range setting.
Example	RES:RANG 95 Sets the Resistance measurement to the 100 Ω range.

Execute and Clear Zero-Adjustment

Clear Zero-Adjustment

Syntax Command **:ADJust:CLEar**

Description Command Clears any zero-adjustment.

Execute Zero-Adjustment

Syntax Query **:ADJust?**
 Response **<0/ 1>**

0 = Indicates that zero-adjustment has succeeded.

1 = Indicates that the offset resistance value exceeded 10 Ω during zero-adjustment.

(3) Sampling

Set and Query Measurement Speed

Syntax Command **:SPEED <FAST/ MEDIUM/ SLOW>**
 Query **:SPEED?**
 Response **<FAST/ MEDIUM/ SLOW>**

Example **:SPEE MED**
 :SPEE?
 MEDIUM

(4) Calculation

Clear and Query the Statistical Calculation

- A data sample can be taken by the following methods:
 1. Press the **F4** [MANU] key on the [MENU]-[TRG] selection screen (p. 92).
 2. Apply a TRIG signal from EXT. I/O connector.
 3. Send a ***TRG** command.
- The **:CALCulate:STATistics:STATE** command does not clear the calculation results.
- When the valid data count is 0, σ_{n-1} returns 0.
- When cleared, the Statistical Calculation function is not turned OFF.
- The upper limit of Cp and Cpk is 99.99. If Cp or Cpk> exceeds 99.99, the value 99.99 is returned.

Statistical Calculation Execution State

Syntax Command **:CALCulate:STATistics:STATE** <1/0/ON/OFF>
 Query **:CALCulate:STATistics:STATE?**
 Response <ON/OFF>

Example **:CALC:STAT:STAT** ON
 :CALC:STAT:STAT?
 ON

Clear Statistical Calculation Results

Syntax Command **:CALCulate:STATistics:CLEar**

Queries the data count

Syntax Query **:CALCulate:STATistics:NUMBER?**
 Response <Total data count (NR1)>,<Valid data count (NR1)>
 Data count = 0 to 30000

Example **:CALC:STAT:NUMB?**
 23456,23449

Query the Mean value

Syntax Query **:CALCulate:STATistics:MEAN?**
 Response <Mean (NR3)>

Query the Maximum value

Syntax Query **:CALCulate:STATistics:MAXimum?**
 Response <Maximum value (NR3)>,<Data no. of Maximum value (NR1)>

Example **:CALC:STAT:MAX?**
 12.4859E+3,1124

Query the Minimum value

Syntax Query **:CALCulate:STATistics:MINimum?**
 Response <Minimum value (NR3)>,<Data no. of Minimum value (NR1)>

Query Comparator results

Syntax	Query	:CALCulate:STATistics:LIMit?
	Response	<Number of Hi (NR1)>,< number of IN (NR1)>,<number of Lo (NR1)>,< number of measurement faults (NR1)>,<number of Out-of-Range measurements (NR1)>
Example		:CALC:STAT:LIM? 1516,9310,737,16,5

Query Standard Deviation

Syntax	Query	:CALCulate:STATistics:DEViation?
	Response	<σ _n (NR3)>,<σ _{n-1} (NR3)>
Example		:CALC:STAT:DEV? 0.0159E-3,0.0161E-3

Query the Process Capability Indices

Syntax	Query	:CALCulate:STATistics:CP?
	Response	<C _p (NR2)>,<C _{pK} (NR2)>
Example		:CALC:STAT:CP? 0.86,0.14

(5) Comparator**Set and Query Comparator Settings**

- When making comparator settings by commands, the measurement range is not automatically selected.

Execute and Query Comparator

Syntax	Command	:CALCulate:LIMit:STATE <1/0/ON/OFF>
	Query	:CALCulate:LIMit:STATE?
	Response	<ON/OFF>
Example		:CALC:LIM:STAT ON

Set and Query Beeper State

Syntax	Command	:CALCulate:LIMit:BEEPer <OFF/ HI/ LO/ HL/ IN>
	Query	:CALCulate:LIMit:BEEPer?
	Response	<OFF/ HI/ LO/ HL/ IN>
Example		:CALC:LIM:BEEP HL

Set and Query Judgment Mode

Syntax Command **:CALCulate:LIMIT:MODE** <ABS/ REF>
 Query **:CALCulate:LIMIT:MODE?**
 Response <ABS/ REF>

<ABS> = Upper limit value/Lower limit value comparison

<REF> = Reference value/range comparison

Example **:CALC:LIM:MODE REF**

Set and Query ABS Mode Upper/Lower Comparator Threshold Values

Syntax Command **:CALCulate:LIMIT:ABS** <Upper threshold>, <Lower threshold>
 Query **:CALCulate:LIMIT:ABS?**
 Response <Upper threshold>, <Lower threshold>
 <Upper limit value> = 0.0000E-3 to 120.000E+6 (NR3)
 <Lower limit value> = 0.0000E-3 to 120.000E+6 (NR3)

Note On the instrument screen, upper and lower limit values are rounded to five digits or fewer.

Example **:CALC:LIM:ABS 1.00035, 0.99965**

Set and Query REF% Mode Reference Resistance

Syntax Command **:CALCulate:LIMIT:REFERENCE** <Reference Resistance>
 Query **:CALCulate:LIMIT:REFERENCE?**
 Response <Reference Resistance>
 <Reference Resistance> = 0.0000E-3 to 120.000E+6 (NR3)

Note On the instrument screen, reference resistance values are rounded to five digits or fewer.

Example **:CALC:LIM:REF 1.2E+3**

Set and Query REF% Mode Upper/Lower Comparator Threshold Percentages

Syntax Command **:CALCulate:LIMIT:PERCent** <Upper limit value (%)>, <Lower limit value (%)>
 Query **:CALCulate:LIMIT:PERCent?**
 Response <Upper limit value (%)>, <Lower limit value (%)>
 <Upper limit value (%)> = -99.9900E+0 to 99.9900E+0 (NR3)
 <Lower limit value (%)> = -99.9900E+0 to 99.9900E+0 (NR3)

9

Note On the instrument screen, upper and lower limit values are rounded to four digits (five digits for RM3542C-3).

Example **:CALC:LIM:PERC 1.505, -2.005**

Queries the comparator result

Syntax Query **:CALCulate:LIMIT:RESULT?**
 Response <HI/ IN/ LO/ OFF/ ERR>

Example **:CALC:LIM:RES?**
 HI

Set and Query Scaling Function

Syntax Command **:CALCulate:SCALing** <1/ 0/ ON/ OFF>
 Query **:CALCulate:SCALing?**
 Response <ON/ OFF>

Note Enables or disables scaling function.

Set and Query Coefficient

Syntax Command **:CALCulate:SCALing:PARameterA** <coefficient>
 Query **:CALCulate:SCALing:PARameterA?**
 Response <coefficient>
 <coefficient> = 0.50000 to 2.00000 (NR2)

Note Sets coefficient for the scaling function.

Set and Query Offset

Syntax Command **:CALCulate:SCALing:PARameterB** <offset>
 Query **:CALCulate:SCALing:PARameterB?**
 Response <offset>
 <offset> = -99.9999E+6 to 99.9999E+6 (NR3)

Note Sets offset for the scaling function.

(6) System

Self-Calibration State and Setting

Execute Self-Calibration

Syntax Command **:SYST:CALibration**

Description Executes self-calibration.

Note If this command is received while measuring, self-calibration executes after measurement is finished.

Set and Query Self-Calibration Execution State

Syntax Command **:SYST:CALibration:AUTO <1/ 0/ ON/ OFF>**

Query **:SYST:CALibration:AUTO?**

Response <ON/ OFF>

<ON> = Self-Calibration AUTO

<OFF> = Self-Calibration MANUAL

Example **:SYST:CAL:AUTO OFF**
:SYST:CAL:AUTO?
OFF

Note Even when AUTO is selected, Self-Calibration can be manually performed at any time with the :SYST:CALibration command.

Set and Query the Key Beeper Setting

Syntax Command **:SYST:BEEPer:STATE <1/ 0/ ON/ OFF>**

Query **:SYST:BEEPer:STATE?**

Response <ON/ OFF>

Example **:SYST:BEEP:STAT ON**
:SYST:BEEP:STAT?
ON

9

Set and Query the Line Frequency Setting

Syntax Command **:SYST:LFRQUENCY <AUTO/ 50/ 60>**

Query **:SYST:LFRQUENCY?**

Response <AUTO/ 50/ 60>

Example **:SYST:LFR 50**
:SYST:LFR?
50

Set and Query the Key-Lock State

Syntax	Command :SYST:KLOCK <1/0/ON/OFF>
	Query :SYST:KLOCK?
	Response <ON/OFF>
Description	Sets the FULL key-lock state (all settings, including the comparator settings, are disabled).
Example	:SYST:KLOC ON :SYST:KLOC? OFF

Set and Query the Header Present Setting

Syntax	Command :SYST:HEADer <1/0/ON/OFF>
	Query :SYST:HEADer?
	Response <ON/OFF>
Example	:SYST:HEAD ON :SYST:HEAD? :SYST:HEADER ON
Description	Sets whether to attach headers to query responses. Queries without setting commands have no header.
Note	When turning the power on and after giving the *RST command, this is initialized to OFF (no header).

Set the EOM Output Method

The output method for the external I/O EOM (end of measurement) signal can be selected from two options.
(Set the EOM signal to ON at EOM and set it to OFF with the specified output method.)

See: "8.2 Timing Chart" (p. 112)

EOM Output Mode Setting

Syntax	Command :SYST:EOM:MODE <HOLD/PULSe>
	Query :SYST:EOM:MODE?
	Response <HOLD/ PULSe>
<HOLD> = Holds the EOM signal until the measurement starts by the next trigger signal.	
<PULSe> = Set EOM=OFF according to the specified pulse width.	

Example	:SYST:EOM:MODE PULS
----------------	---------------------

EOM Pulse Width Setting

Syntax	Command :SYST:EOM:PULSe <Pulse width>
	Query :SYST:EOM:PULSe?
	Response <Pulse width>
<Pulse width> = 0.001 sec to 0.100 (NR2) sec	

Example	:SYST:EOM:PULS 0.005
----------------	----------------------

Stage mismatch prevention function settings and queries

Syntax	Command :SYST:STAGe <1/2/OFF>
	Query :SYST:STAGe?
	Response <1/2/OFF>
Description	To prevent erroneous connection of stages, the EOM signal output pin is changed between the first and second stages.
Example	:SYST:STAG 1

Delimiter Setting

Syntax Command **:SYST:TERMinator** <0/ 1>
 Query **:SYST:TERMinator?**
 Response <0/ 1>
 <0> = LF+EOI
 <1> = CR, LF+EOI

Example **:SYST:TERM 1**
:SYST:TERM?
0

Note • At power-on, this is set to 0 (LF+EOI).
 • The RS-232C terminator is fixed as CR+ LF.

Set and Query the system date

Syntax Command **:SYST:DATE** <Year>,<Month>,<Day>
 Query **:SYST:DATE?**
 Response <Year>,<Month>,<Day>
 <Year> = 00 to 99 [year]
 <Month> = 01 to 12 [month]
 <Day> = 01 to 31 [day]

Description Sets and queries the date of the real-time system clock.

Error Attempting to set an out-of-range numerical value returns an execution error.
 Attempting to set a wrong date (such as 09,06,31) returns an execution error.

Example **:SYST:DATE 9,10,5**
:SYST:DATE?
09,12,03

Set and Query the system time

Syntax Command **:SYST:TIME** <Hours>,<Minutes>,<Seconds>
 Query **:SYST:TIME?**
 Response <Hours>,<Minutes>,<Seconds>
 <Hours> = 00 to 23 [hours]
 <Minutes> = 00 to 59 [minutes]
 <Seconds> = 00 sec to 59 sec

9

Description Sets and queries the time of the real-time system clock.

Example **:SYST:TIME 08,25,00**
:SYST:TIME?
23,09,53

Back up measurement settings

Syntax Command **:SYST:BACKup**

Description Stores current measurement settings in non-volatile memory. The measurement condition setting using communication commands are not backed up. (The settings will be lost when the main power is turned off.)
Use this command to store the settings as occasion demands.

Compare and Query Measurement Settings on Two Instruments (Settings Monitor Function)

Set and Query Settings Comparison

Syntax Command **:SYST:SETMonitor <1/ 0/ ON/ OFF>**
 Query **:SYST:SETMonitor?**
 Response **<ON/ OFF>**

Description This function compares the settings (such as comparator) of two instruments to determine whether they are the same.
See: "4.11 Comparing the Measurement Settings of Two Instruments (Settings Monitor Function)" (p. 64)

Example **:SYST:SETM ON**

Set Settings Monitor Order (1st and 2nd Stages)

Syntax Command **:SYST:SETMonitor:ORDer <1/2>**
 Query **:SYST:SETMonitor:ORDer?**
 Response **<1/ 2 (NR1)>**

Example **:SYST:SETM:ORD 1**

Set and Query Settings Monitor Tolerance

Syntax Command **:SYST:SETMonitor:ALLOWance <0 to 9.999(%)>**
 Query **:SYST:SETMonitor:ALLOWance?**
 Response **<0.0000E+0 to 9.9990E+0 (NR3)>[%]**

Example **:SYST:SETM:ALL 0.5**

Return to Local Control

Syntax Command **:SYST:LOCAL**

Description Disables communications remote control and re-enables local control. The panel keys are re-enabled.

Example **:SYST:LOC**

Set and Query Measurement-Synchronized Data Output RS-232C

Syntax Command **:SYST:DATAout <1/ 0/ ON/ OFF>**
 Query **:SYST:DATAout?**
 Response **<ON/ OFF>**

Set and Query Measurement-Synchronized Data Output RS-232C

Description	ON: The measurement value is automatically sent each time an externally triggered measurement is finished. During internal triggering, the measurement values are sent automatically whenever the TRIG signal is applied. OFF: The measurement values are not automatically sent. This function cannot be used with GP-IB Interface.
--------------------	---

Set and Query the measurement data format

Syntax	Command :SYSTem:FORMAT <ASCII/ BINARY>
	Query :SYSTem:FORMAT?
	Response <ASCII/ BINARY>

Description	The data format for sending measurement values can be set to ASCII strings or binary data.
Note	Binary format supports high-speed transfers, but requires binary data support on the receiving end (p. 129). When set in binary data format, the delimiter is not sent from this instrument.

Set and Query probe short-circuit detection

Enables/Disables Probe Short-Circuit Detection Function

Syntax	Command :SYSTem:4WCHeck <1/ 0/ ON/ OFF>
	Query :SYSTem:4WCHeck?
	Response <ON/ OFF>

Probe Short-Circuit Detection Timing

Syntax	Command :SYSTem:4WCHeck:TIME <Time for Detection>
	Query :SYSTem:4WCHeck:TIME?
	Response <Time for Detection>

<Time for Detection> = 0.001 sec to 0.1000 (NR2) sec

Description	Probe short-circuit detection is performed after the specified time for detection following end-of-measurement. At the end of measurement, remove the probes from the measurement object within the time specified for detection.
Example	:SYST:4WCH:TIME 0.01

Set and Query the Retry Function

Enables/Disables Measurement Retry Function

Syntax	Command :SYSTem:RETRY <1/ 0/ ON/ OFF>
	Query :SYSTem:RETRY?
	Response <ON/ OFF>

Example	:SYST:RETR ON
----------------	---------------

Set and Query the Retry Interval of the Measurement Retry Function

Syntax	Command :SYSTem:RETRY:TIME <0.001 sec to 0.05 sec>
	Query :SYSTem:RETRY:TIME?
	Response <0.001 sec to 0.050 sec (NR2)>

Example	:SYST:RETR:TIME 0.02
----------------	----------------------

Set and Query the Applied Voltage Limit Function

Enables/Disables Applied Voltage Limit Function

Syntax Command **:SYST:VOLTLimit** <1/ 0/ ON/ OFF>
 Query **:SYST:VOLTLimit?**
 Response <ON/ OFF>

Example **:SYST:VOLTL ON**

Set and Query the Percentage Output Function

Enables/Disables the Percentage Output Function

Syntax Command **:SYST:PERCent** <1/ 0/ ON/ OFF>
 Query **:SYST:PERCent?**
 Response <ON/ OFF>

<ON> = Enables the Percentage Output Function

<OFF> = Disables the Percentage Output Function

Description Changes transmitted measurement data to relative values.

See: "6.5 Outputting Measured Values as Relative Values (Percentage Output Function)
 (RM3542C-1, RM3542C-2 or RM3542C-3)" (p. 100)

Query the Serial Number

Syntax Query **:SYST:SERial?**
 Response <Serial Number>

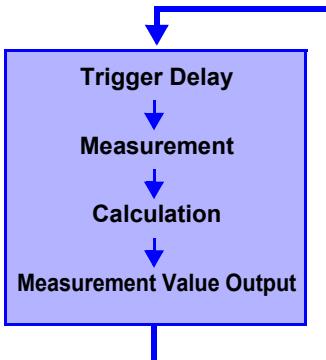
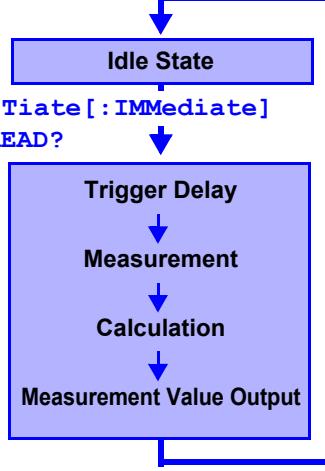
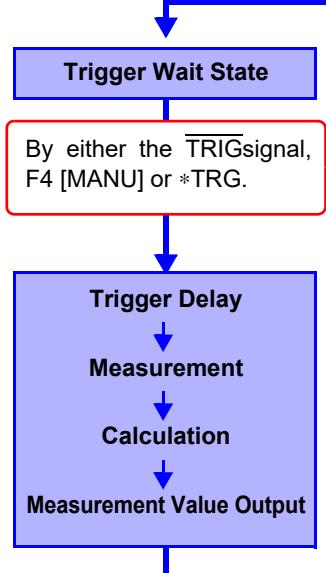
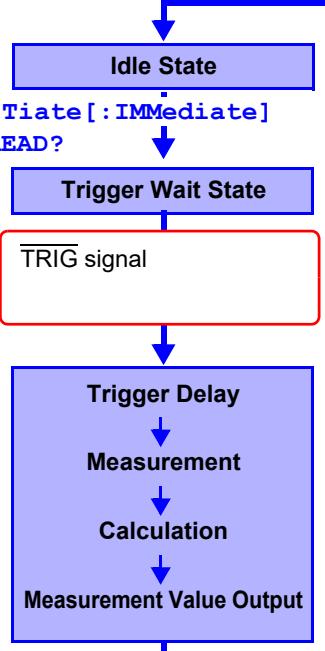
Example **:SYST:SERI?**

123456789

Description Queries the serial number (9 digits).

System Reset

Syntax Command **:SYST:RESet**





Description Initializes all except communications and clock settings.
 After initialization, settings are stored in non-volatile memory for backup.

(7) Trigger

Relationship Between Trigger Source and Continuous Measurement Operation

Operates as follows with the continuous Measurement setting (:INITiate:CONTinuous) (p. 170) and trigger source setting (:TRIGger:SOURce) (p. 170).

See: "9.8 Data exporting methods" (p. 184)

Measurement flow		Continuous Measurement Command setting only	
		:INITiate:CONTinuous ON	:INITiate:CONTinuous OFF
Trigger Source	:TRIGger:SOURce IMM	<p>Free-Run state. Measurement continues automatically.</p>	<p>Trigger by :INITiate (or :READ?) command.</p>
	:TRIGger:SOURce EXT	<p>Trigger by the TRIG signal, F4 [MANU], or *TRG command. After measurement, enters the trigger wait state.</p>	<p>Waits for trigger with :INITiate (or :READ?). Trigger by TRIG signal.</p>

:INITiate:CONTinuous OFF

It can only be set by the Remote command.

If this has been set to OFF and the operation returns to the Local state or power is turned on again, the following state will be set when the power is turned back on.

:INITiate:CONTinuous ON ("To Cancel the Remote Status (Enter the Local Status)" (p. 130))

How to export measurement values: "9.8 Data exporting methods" (p. 184)

Set and Query the Continuous Measurement Setting

Syntax	Command : INITiate:CONTinuous <1/0/ON/OFF> Query : INITiate:CONTinuous? Response <ON/OFF>
	<ON> = Continuous Measurement Enabled <OFF> = Continuous Measurement Disabled
Description	<ul style="list-style-type: none"> Continuous Measurement Enabled: After measurement, enters the Trigger Wait State. When the trigger source setting is IMMEDIATE, the next trigger occurs immediately (the Free-Run State). Continuous Measurement Disabled: After measurement, enters the Idle State instead of the Trigger Wait State. Triggering is ignored in the Idle State. Executing :INITiate[:IMMEDIATE] enables the Trigger Wait State. Continuous measurement is enabled upon exit from the Remote State.
Example	:INIT:CONT OFF :INIT:CONT? ON

Trigger Wait Setting

Syntax	Command : INITiate[:IMMEDIATE]
Description	Switches triggering from the Idle State to the Trigger Wait State.
Example	<p>Disable continuous measurement, and read one value for each trigger event.</p> <p>Sending</p> <p>:TRIG:SOUR IMM Trigger occurs immediately after the system enters the Trigger Wait State</p> <p>:INIT:CONT OFF Disables continuous measurement</p> <p>:INIT Setting the system in the Trigger Wait State execute the trigger immediately since :TRIG:SOUR IMM has been set</p> <p>:FETC? Fetch the measurement value</p> <p>Receiving</p> <p>2.16414E+3 Measurement value is 2.16414 kΩ</p>
Error	When continuous measurement is enabled (:INITiate:CONTinuous ON), an execution error occurs.
Note	<ul style="list-style-type: none"> When the trigger source is IMMEDIATE, triggering occurs immediately before entering the Idle State. When the trigger source is EXTERNAL, the Trigger Wait State is enabled to wait for an external trigger, and when a trigger occurs, one measurement is taken before entering the Idle State.

Trigger Source Setting and Queries

Syntax	Command : TRIGger:SOURce <IMMEDIATE/ EXTERNAL> Query : TRIGger:SOURce? Response <IMMEDIATE/ EXTERNAL>
	<IMMEDIATE> = Internal triggering <EXTERNAL> = External triggering
Description	Press the F4 [MANU] key on the [MENU]-[TRG] selection screen (Basic settings screen) to trigger by the TRIG signal or *TRG command.
Example	:TRIG:SOUR IMM :TRIG:SOUR? IMMEDIATE
Note	When the external [EXT] is set to ON, the auto-memory function will be disabled (OFF).

Set and query Trigger Delay 1 time

Syntax	Command	<code>:TRIGger:DELay1 <Delay1 time></code>
	Query	<code>:TRIGger:DELay1?</code>
	Response	<code><Delay1 time></code>
<Delay1 time> = 0.000 sec to 0.100 (NR2) sec		
Example		<code>:TRIG:DEL1?</code> 0.0100

Set and Query the Trigger Signal Logic

Syntax	Command	<code>:TRIGger:EDGE <RISE/FALL></code>
	Query	<code>:TRIGger:EDGE?</code>
	Response	<code><RISE/ FALL></code>
<RISE> = Rising edge (OFF edge) <FALL> = Falling edge (ON edge)		
Description	Set the operating logic of the <code>TRIG</code> signal at the EXT. I/O pins.	
Example		<code>:TRIG:EDGE?</code> FALL

(8) Reading Measurement Values

Measurement Value Format

When the Percentage Output Function disabled.

Measurement range	Measurement value	When displaying ±OvrRng	Measurement fault
10 mΩ	± XX.XXXXX E-3	±10.00000E+8	+10.00000E+9
100 mΩ	± XXX.XXXX E-3	±100.0000E+7	+100.0000E+8
1000 mΩ	± XXXX.XXX E-3	±1000.000E+6	+1000.000E+7
3 Ω	± XX.XXXXX E+0	±10.00000E+8	+10.00000E+9
10 Ω	± XX.XXXXX E+0	±10.00000E+8	+10.00000E+9
100 Ω	± XXX.XXXX E+0	±100.0000E+7	+100.0000E+8
300 Ω	± XXXX.XXX E+0	±1000.000E+6	+1000.000E+7
1000 Ω	± XXXX.XXX E+0	±1000.000E+6	+1000.000E+7
10 kΩ	± XX.XXXXX E+3	±10.00000E+8	+10.00000E+9
30 kΩ	± XXX.XXXX E+3	±100.0000E+7	+100.0000E+8
100 kΩ	± XXX.XXXX E+3	±1000.000E+7	+1000.000E+8
300 kΩ	± XXXX.XXX E+3	±1000.000E+6	+1000.000E+7
1000 kΩ	± XXXX.XXX E+3	±1000.000E+6	+1000.000E+7
3 MΩ	± XX.XXXXX E+6	±10.00000E+8	+10.00000E+9
10 MΩ	± XX.XXXXX E+6	±10.00000E+8	+10.00000E+9
30 MΩ	± XXX.XXXX E+6	±100.0000E+7	+100.0000E+8
100 MΩ	± XXX.XXXX E+6	±100.0000E+7	+100.0000E+8

9

When the Percentage Output Function enables.

Relative value	When displaying ±OvrRng %	When displaying ±OvrRng Ω	Measurement fault
± XXX.XXXX E+0	±100.0000E+7	±100.0000E+7	+100.0000E+8

Note If the comparator function is set to ABS mode, measurement outliers occurring while the percentage output function is disabled will be output. The “+” sign of measurement values is returned as a space (ASCII code 20H).

9.7 Message Reference

The timing at which the measurement values are received is different for the **:FETCH?** and **:READ?** commands.

See: "9.8 Data exporting methods" (p. 184)

Reading the Most Recent Measurement

Syntax Query **:FETCH?**

Description Reads the most recent measurement. No trigger occurs.

See: "Measurement Value Format" (p. 171)

Example **:FETC?**
 1023.579E-3

Note Binary data is output when the Binary sending format is selected.

Measuring (Awaiting Triggers and Reading Measurements)

Syntax Query **:READ?**

Description Switches from the Idle State to the Trigger Wait State, then reads the next measurement value after the end of measurement.

(Trigger Source)	Operation
IMMEDIATE	Triggers and reads measurement value.
EXTERNAL	Triggered by the <u>TRIG</u> signal (EXT. I/O) input, and continuously reads the measurement values.

See: "Measurement Value Format" (p. 171)

Error • This command causes an execution error if issued during **:INITiate:CONTinuous ON**
 • This command causes an execution error if issued during the Trigger Wait State.

Note • The next command does not execute until measurement is finished.
 • When using an external [EXT] trigger source, and the measurement value auto-send function (Auto-Memory function) is enabled (ON), returned measurement values will be duplicated. Therefore, disable the Auto-Memory function (OFF).

See: "6.4 Auto-Exporting Measurement Values (at End of Measurement) (Data Output Function)" (p. 99)

• Binary data is returned when the Binary sending format is selected.

(9) Memory Function

You can save and load up to 30000 measurement data entries.

Set and Query the Retry Function

Memory Function Execution Mode

Syntax	Command : MEM ory: MODE <OFF/ MEMory/ AUTO>
	Query : MEM ory: MODE ?
	Response <OFF/ MEMory/ AUTO>
	<OFF> = Memory function OFF
	<MEMORY> = Data memory function
	<AUTO> = Auto memory function
Description	Selects the memory function operation mode. The Memory function can be disabled (OFF), or either Data-memory function or Auto-memory function can be enabled (ON).
Example	: MEM : MODE MEM : MEM : MODE ? AUTO
Note	<ul style="list-style-type: none"> Changing the memory mode setting erases stored data. Enabling the AUTO (auto-memory function) mode automatically selects internal [INT] triggering and enables statistical calculation function.

Clear Memory Data

Syntax	Command : MEM ory: CL ear
Example	: MEM : CL E

Retrieve the Memory Data Count

Syntax	Query : MEM ory: COUNT ?
	Response <Memory data count>
	<Memory data count> = 0 to 30000 (NR1)
Example	: MEM : COUN ?

Read Memory Data

Syntax	Query :MEMory:DATA?
	Response <Measurement value (NR3)>,< Measurement value (NR3)>,..., < Measurement value (NR3)>
Description	Measurement values transferred from memory are separated by commas (,). The number of stored measurement values to be exported can also be acquired with the :MEMory:COUNT? query. Data stored by the Data Memory Function and Auto-Memory Function can be acquired by this command. (Either Data Memory Function or Auto-Memory Function can be enabled (ON)) See: "Measurement Value Format" (p. 171)
Note	<ul style="list-style-type: none"> Memory data is available only by remote command. Stores measurement values by <u>pressing</u> the F4 [MANU] key on the [MENU]-[TRG] selection screen or applying, the TRIG signal or *TRG command. Binary data is returned when the Binary sending format is selected.

Set and Query the Memory Point (maximum data quantity)

Syntax	Command :MEMory:POINT <1 to 30000>
	Query :MEMory:POINT?
	Response <1 to 30000 (NR1)>
Description	Sets the number of measurement values that can be stored. When the number of stored values reach the memory point number, no further values are stored. (does not no overwrite)
Example	:MEM:POIN 1000 :MEM:POIN? 1000
Note	<ul style="list-style-type: none"> When the Memory Function is set to Auto-Memory, the upper limit of the memory points is 99. It is possible to set more than 99 points using the :MEMory:POINT command but more than 99 points cannot be stored. When the auto-memory function is enabled (ON), stored data is erased when the memory point number is changed.

(10) Print method setting

Set and Query the Print Method Setting

Syntax	Command :PRINter:MODE <NORMAL / SAMPLE>
	Query :PRINter:MODE?
	Response <NORMAL / SAMPLE>
	<NORMAL> = Standard printing
	<SAMPLE> = Sample printing
Example	:PRIN:MODE SAMP :PRIN:MODE? SAMPLE

Set and Query of the Number of Samples for Sample Printing

Syntax	Command :PRINter:SAMPLE:NUMBER <1 to 999>
	Query :PRINter:SAMPLE:NUMBER?
	Response <1 to 999 (NR 1)>
Example	:PRIN:SAMP:NUMB 30 :PRIN:SAMP:NUMB? 30

Set and Query the Sample Printing Conditions

Syntax	Command :PRINter:SAMPLE:CONDITION <ALL / IN>
	Query :PRINter:SAMPLE:CONDITION?
	Response <ALL / IN>
	<ALL> = Print all without relying on the comparator judgment
	<IN> = Print only if comparator judgment is "IN"
Example	:PRIN:SAMP:COND IN :PRIN:SAMP:COND? IN

Set and Query the Number of Data for the Sample Printing

Syntax	Command :PRINter:SAMPLE:LINE <1 / 3>
	Query :PRINter:SAMPLE:LINE?
	Response <1 / 3>
	<1> = Print 1 data in 1 line
	<3> = Print 3 data in 1 line
Example	:PRIN:SAMP:LINE 3 :PRIN:SAMP:LINE? 3

(11)Measurement Conditions

Set and Query Delay 2 (Delay time after the measurement current has been applied)

Syntax	Command :RESistance:DELay2 <Range> , < Delay 2 time>
	Query :RESistance:DELay2? <Range>
	Response <Delay 2 time>
	Command :LPResistance:DELay2 <Range> , < Delay 2 time>
	Query :LPResistance:DELay2? <Range>
	Response <Delay 2 time>
	<Range> = (:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
	<Delay2 time> = 0.0000 to 0.1000 (NR2) [sec]
Example	:RES:DEL2 RNG1000MIL,0.003 :RES:DEL2? RNG10 0.0050

Set and Query Integration Time (multiples of power line cycles)

Syntax	Command :RESistance:NPLCycles <Range> , <Speed> , < Integration time (NPLC)>
	Query :RESistance:NPLCycles? <Range> , < Speed>
	Response <Integration time (NPLC)>
	Command :LPRESistance:NPLCycles <Range> , <Speed> , < Integration time (NPLC)>
	Query :LPResistance:NPLCycles? <Range> , < Speed>
	Response <Integration time (NPLC)>
	<Range> = (:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
	<Speed> = SLOW/ MEDIUM/ FAST
	<Integration time (NPLC)> = 0.0100 to 6.0000 (NR2)

Description Sets the integration time as an integer multiple of the power line cycles (PLC).

Note

- For high-resistance measurements, hum noise is suppressed and stable measurement values are acquired by setting an integer multiple of power line cycles.
- The values are converted to seconds, and values over 100 ms are set to 100 ms.
- When the integration time is acquired with a query, the instrument internal variable is converted and output.

In some cases, the returned value may not match the set value.

Set and Query Integration Time (in seconds)

Syntax	Command	:RESistance:APERture <Range> , <Speed> , < Integration time (seconds)>
	Query	:RESistance:APERture? <Range> , <Speed>
	Response	<Integration time (seconds)>
	Command	:LPResistance:APERture <Range> , <Speed> , <Integration Time (seconds)>
	Query	:LPResistance:APERture? <Range> , <Speed>
	Response	<Integration time (seconds)>
	<Range> =	(:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
	<Speed> =	SLOW/ MEDIUM/ FAST
	<Integration time (seconds)> =	0.0001 sec to 0.1000 (NR2) sec

Description Sets the integration time, in seconds.

Set and Query Contact Improver operating mode

Syntax	Command	:RESistance:CIMProve <Range> , <OFF/ HOLD/ PULSE>
	Query	:RESistance:CIMProve? <Range>
	Response	<OFF/ HOLD/ PULSE>
	Command	:LPResistance:CIMProve <Range> , <OFF/ HOLD/ PULSE>
	Query	:LPResistance:CIMProve? <Range>
	Response	<OFF/ HOLD/ PULSE>
	<Range> =	(:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000

Description Sets Contact Improver operation to OFF/ HOLD/ PULSE.

9

Set and Query Contact Improver level

Syntax	Command	:RESistance:CIMProve:LEVel <Range> , <Level>
	Query	:RESistance:CIMProve:LEVel? <Range>
	Response	<Level>
	Command	:LPResistance:CIMProve:LEVel <Range> , <Level>
	Query	:LPResistance:CIMProve:LEVel? <Range>
	Response	<Level>
	<Range> =	(:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
	<Level> =	L1/ L2/ L3/ L4 (Applied current) (L1: 17 mA/ L2: 25 mA/ L3: 35 mA/ L4: 50 mA)

Description Sets the level of current applied by the Contact Improvement function.

Set and Query Measurement Current Mode

Syntax	Command :RESistance:CURREnt <Range> , <PULSe/ CONTinuous>
	Query :RESistance:CURREnt? <Range>
	Response <PULSE/ CONTINUOUS>
	Command :LPResistance:CURREnt <Range> , <PULSe/ CONTinuous>
	Query :LPResistance:CURREnt? <Range>
	Response <PULSE/ CONTINUOUS>
	<Range> = (:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
	<PULSe> = The measurement current is applied as a pulse only during the measurement.
	<CONTinuous> = The measurement current is applied continuously.
Description	Selects the method of current application. Select (CONTinuous) when measuring objects that require time for stabilization after applying the measurement current.
Note	When using the Contact Improvement function (set to HOLD or PULSE), the measurement current is applied only as a pulse, even if CONTinuous has been selected. Therefore, to measure with a continuous current, the Contact Improvement function must be disabled (set to OFF) (p. 177).

Set and Query contact check operation

Syntax	Command :RESistance:CONTACTcheck <Range> , <1/ 0/ ON/ OFF>
	Query :RESistance:CONTACTcheck? <Range>
	Response <ON/ OFF>
	Command :LPResistance:CONTACTcheck <Range> , <1/ 0/ ON/ OFF>
	Query :LPResistance:CONTACTcheck? <Range>
	Response <ON/ OFF>
	<Range> = (:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
Description	Enables/disables the Contact Check function.

Set and Query contact check threshold

Syntax	Command :RESistance:CONTactcheck:LEVel <Range>, <Level>
	Query :RESistance:CONTactcheck:LEVel? <Range>
	Response <Level>
	Command :LPResistance:CONTactcheck:LEVel <Range>, <Level>
	Query :LPResistance:CONTactcheck:LEVel? <Range>
	Response <Level>
	<Range> = (:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
	<Level> = L1/ L2/ L3 / L4/ L5/ L6/ L7 Contact Check Error Threshold: (L1: 50 Ω/ L2: 100 Ω/ L3: 150 Ω/ L4: 200 Ω/ L5: 300 Ω/ L6: 400 Ω/ L7: 500 Ω)
Description	Sets the error threshold value for contact checking.

Set and Query voltage level monitor

Syntax	Command :RESistance:VMONitor <Range>, <1/ 0/ ON/ OFF>
	Query :RESistance:VMONitor? <Range>
	Response <ON/ OFF>
	Command :LPResistance:VMONitor <Range>, <1/ 0/ ON/ OFF>
	Query :LPResistance:VMONitor? <Range>
	Response <ON/ OFF>
	<Range> = (:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
Description	Enables/disables the voltage level monitor function.

9

Set and Query voltage level monitor level

Syntax	Command :RESistance:VMONitor:LEVel <Range>, <Level>
	Query :RESistance:VMONitor:LEVel? <Range>
	Response <Level>
	Command :LPResistance:VMONitor:LEVel <Range>, <Level>
	Query :LPResistance:VMONitor:LEVel? <Range>
	Response <Level>
	<Range> = (:RESistance) RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/ RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/ RNG30MEG/ RNG100MEG (:LPResistance) RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000
	<Level> = L1/ L2/ L3 (L1: LOOSE Loose/ L2: NORMAL Normal/ L3: SEVERE Severe)
Description	Sets the error level for the voltage level monitor function.

(12)Other functions**Set and Query jumper resistance measurement support function
(RM3542C-1, RM3542C-2 or RM3542C-3 only)****Set and Query jumper resistance measurement support function**

Syntax Command **:SYST:RANGELimit** <1/0/ON/OFF>
 Query **:SYST:RANGELimit?**
 Response <ON/OFF>

Description When the jumper resistance measurement support function is enabled, the lower limit of the resistance measurement range can be set.

Example **:SYST:RANGEL ON**

Jumper resistance measurement support function lower limit value setting and query

Syntax Command **:SYST:RANGELimit:RANGE** <Measurement range>
 Query **:SYST:RANGELimit:RANGE?**
 Response <Measurement range(NR3)>
 <Measurement range (NR3)>= 1000.000E-3/ 10.00000E+0/ 100.000E+0

Description Command Inputs the lower limit range for the jumper resistance measurement support function.
 The instrument will automatically set the optimal measurement range capable of measuring the given numerical data. (1000 mΩ/ 10 Ω/ 100 Ω range)

Query Queries the lower limit range for the jumper resistance measurement support function.

Example **:SYST:RANGEL:RANG 95**

Sets the lower limit range to the 100 Ω range.

:SYST:RANGEL:RANG?
100.0000E+0

Note Only the 1000 mΩ, 10 Ω, and 100 Ω ranges can be set.

Preset Function (RM3542C-1, RM3542C-2 or RM3542C-3 only)**Saving instrument settings**

Syntax Command **:SYST:PRESet**
Description Command Saves instrument settings.
Example **:SYST:PRE**

ΔR Function (RM3542C-3 only)**Set and Query ΔR Function**

Syntax Command **:SYST:DELTar** <1/0/ON/OFF>
 Query **:SYST:DELTar?**
 Response <ON/OFF>

Description When the ΔR function is enabled, the measurement values of two RM3542C-3 units can be linked for more precise testing.

Example **:SYST:DELT ON**

Stage setting and query

Syntax Command **:SYST:DELTar:STAGE** <1/2>

Query :SYST:DELT:STAGE?
 Response <1 / 2 (NR1)>

Example :SYST:DELT:STAG 1

Stage number setting and query

Syntax Command :SYST:DELT:SHIFT <Stage number>

Query :SYST:DELT:SHIFT?
 Response <Stage number(NR1)>
 <Stage number> = 1 to 99 (NR1)

Example :SYST:DELT:STAG 1

FAIL judgment count setting and query

Syntax Command :SYST:DELT:FCNT <FAIL judgment count>

Query :SYST:DELT:FCNT?
 Response <FAIL judgment count(NR1)>
 <FAIL judgment count> = 1 to 10 (NR1)

Example :SYST:DELT:FCNT 1

First- and second-stage tolerance setting and query

Syntax Command :SYST:DELT:LIMit <Tolerance>

Query :SYST:DELT:LIMit?
 Response <Tolerance(NR3)>
 <Tolerance> = 0.0000E+0 to 99.999E+0 (NR3)

Example :SYST:DELT:LIM 99.99

Second-stage testing method setting and query (when first-stage judgment is high or low)

Syntax Command :SYST:DELT:TR2Ng <1/0/ON/OFF>

Query :SYST:DELT:TR2Ng?
 Response <ON/OFF>

Description Sets the second-stage testing method based on the first-stage judgment result.
 When ON, second-stage testing will be skipped when the judgment is high or low.

Example :SYST:DELT:TR2N ON

Second-stage testing method setting and query (when first-stage judgment is ERR)

Syntax Command :SYST:DELT:TR2Error <1/0/ON/OFF>

Query :SYST:DELT:TR2Error?
 Response <ON/OFF>

Description Sets the second-stage testing method based on the first-stage judgment result.
 When ON, second-stage testing will be skipped when the judgment is ERR.

Example :SYST:DELT:TR2E ON

Clearing the first-stage measured value

Syntax Command :SYST:DELT:CLEAR

Description Clears the first-stage measured value.

Average Function (RM3542C-3 only)

Set and Query Average Function

Syntax

Command	<code>:RESistance:AVERage:STATE <Range>, <1/0/ON/OFF></code>
Query	<code>:RESistance:AVERage:STATE? <Range></code>
Response	<code><ON/OFF></code>

`<Range>` = RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/
RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/
RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/
RNG30MEG/ RNG100MEG

Example :RES:AVER:STAT RNG100MIL, ON

Set and Query Average Function (Low-power Resistance Measurement)

Syntax

Command	<code>:LPResistance:AVERage:STATE <Range>, <1/0/ON/OFF></code>
Query	<code>:LPResistance:AVERage:STATE? <Range></code>
Response	<code><ON/OFF></code>

`<Range>` = RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000

Example :LPR:AVER:STAT RNG100MIL, ON

Average count setting and query

Syntax

Command	<code>:RESistance:AVERage:NUMBER <Range>, <Average count></code>
Query	<code>:RESistance:AVERage:NUMBER? <Range></code>
Response	<code><Average count(NR1)></code>

`<Range>=` RNG10MIL/ RNG100MIL/ RNG1000MIL/ RNG3/
RNG10/ RNG100/ RNG300/ RNG1000/ RNG10K/ RNG30K/
RNG100K/ RNG300K/ RNG1000K/ RNG3MEG/ RNG10MEG/
RNG30MEG/ RNG100MEG

`<Average count>` = 2 to 32

Example :RES:AVER:NUMB RNG100MIL, 16

Average count setting and query (Low-power Resistance Measurement)

Syntax

Command	<code>:LPResistance:AVERage:NUMBER <Range>, <Average count></code>
Query	<code>:LPResistance:AVERage:NUMBER? <Range></code>
Response	<code><Average count (NR1)></code>

`<Range>` = RNG1000MIL/ RNG3/ RNG10/ RNG100/ RNG300/ RNG1000

`<Average count>` = 2 to 32

Example :LPR:AVER:NUMB RNG100MIL, 16

BIN Measurement Function (RM3542C-3 only)

Set and Query BIN Measurement Function

Syntax	Command :CALCulate:LIMIT:STATE <2/1/0/BIN/ON/OFF>
	Query :CALCulate:LIMIT:STATE?
	Response <BIN/ON/OFF>
Description	When the bin measurement function is enabled, up to seven sets of upper and lower limit comparisons can be performed.
Example	:CALC:LIM:STAT ON

Judgment stage setting and query

Syntax	Command :CALCulate:BIN:STATE <1/0/ON/OFF>
	Query :CALCulate:BIN:STATE?
	Response <ON/OFF>
Example	:CALC:BIN:STAT ON

Usable pattern setting and query

Syntax	Command :CALCulate:BIN:ENABLE <Usable pattern>
	Query :CALCulate:BIN:ENABLE?
	Response <Usable pattern(NR1)> <Usable pattern> = 0 to 127 (NR1)
Example	:CALC:BIN:ENAB 10

Reference resistance value setting and query

Syntax	Command :CALCulate:BIN:REFERENCE <Reference resistance>
	Query :CALCulate:BIN:REFERENCE?
	Response <Reference resistance(NR3)> <Reference resistance> = 0.0000E-3 to 120.0000E+6 (NR3)
Example	:CALC:BIN:REF 100.0000E-3

Judgment range setting and query

Syntax	Command :CALCulate:BIN:PERCent <Bin number>, <Upper limit value>, <Lower limit value>
	Query :CALCulate:BIN:PERCent? <Bin number>
	Response <Upper limit value (NR3)>, <Lower limit value(NR3)> <Bin number (NR1)> = 0 to 6 <Upper limit value (NR3)> = -99.9900E+0 to 99.9900E+0 <Lower limit value (NR3)> = -99.9900E+0 to 99.9900E+0
Example	:CALC:BIN:PERC 1, 80.00E+0, -80.00E+0

Judgment result query

Syntax	Query :CALCulate:BIN:RESULT?
	Response <Judgment result (NR1)> <Judgment result (NR1)> = 0 to 128

Judgment result display setting and query

Syntax	Command :CALCulate:BIN:DISPLAY <1/0/ON/OFF>
	Query :CALCulate:BIN:DISPLAY?
	Response <ON/OFF>
Example	:CALC:BIN:DISP ON

9.8 Data exporting methods

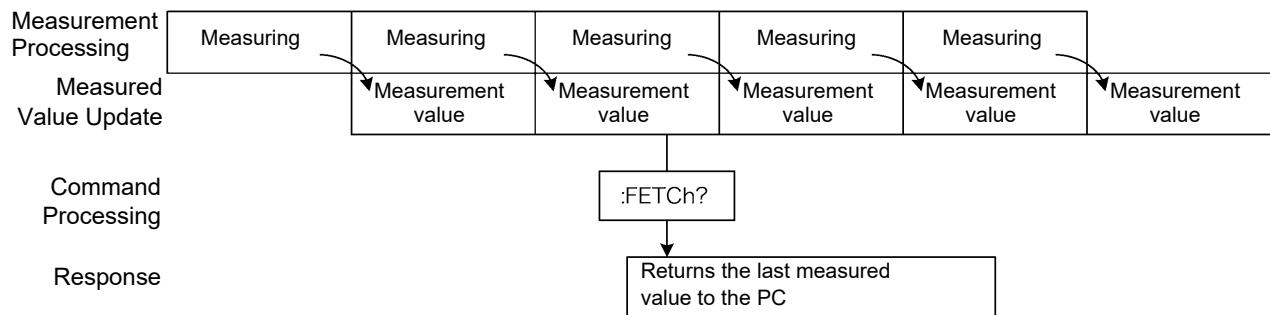
Basic Data Exporting Methods

Flexible data exporting is available depending on the application.

Free-Run Data Exporting

Default setting	:INITiate:CONTinuous ON (continuous measurement enabled) :TRIGger:SOURce IMMEDIATE (internal trigger)
Exporting	:FETCH? Exports the most recent measurement.

Data Export by Host Trigger

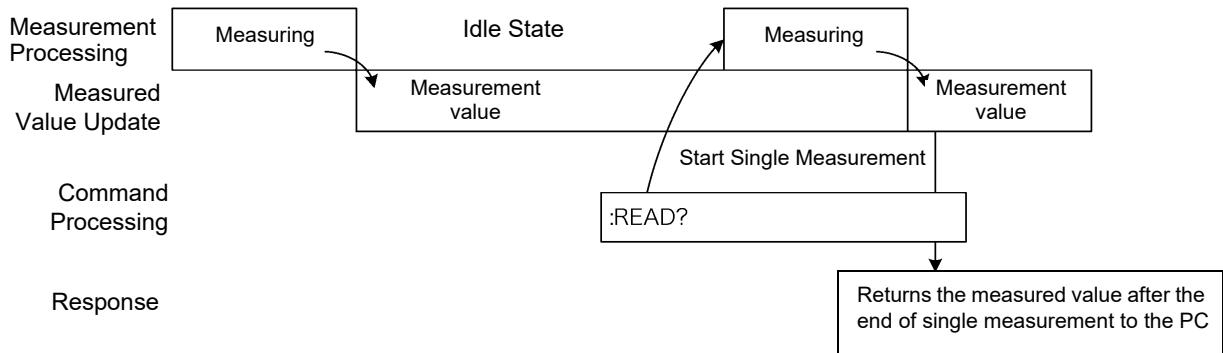

Default setting	:INITiate:CONTinuous OFF (continuous measurement disabled) :TRIGger:SOURce IMMEDIATE (internal triggering)
Exporting	:READ? A trigger occurs, and a measurement is taken and the result is transferred.

Exporting by pressing the F4 [MANU] Key^{*1} or applying the **TRIG** signal

Default setting	:INITiate:CONTinuous OFF (continuous measurement disabled) :TRIGger:SOURce EXT (external trigger)
Exporting	:READ? When a TRIG signal is input by pressing the F4 [MANU] key ^{*1} or TRIG signal, measures and transfers the result.

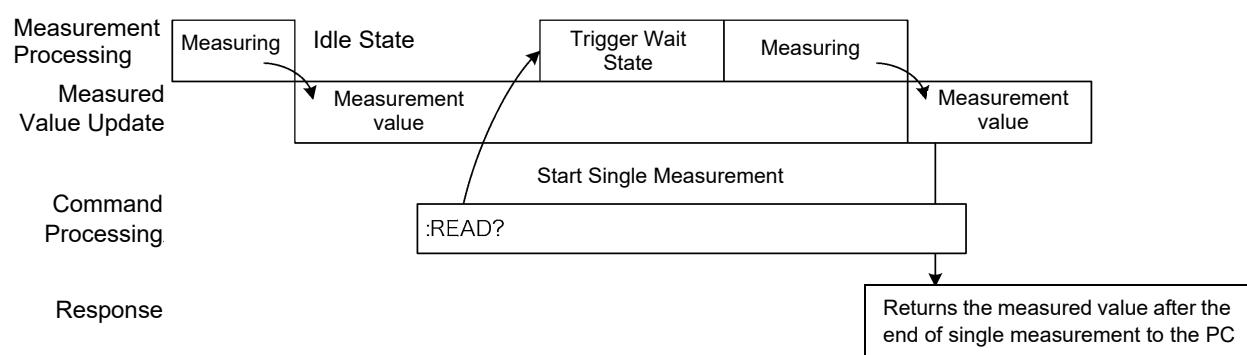
*1. Press the **F4** [MANU] key displayed when [TRG: EXT] has been set on the Basic Settings Screen.

The :FETCh? command is used with continuous measurement and internal trigger enabled


This is the simplest method for exporting measurement values.

It is ideal when there are no severe constraints on the measurement (tact) time, and when external synchronization is not needed.

After connecting to the measuring object, wait for twice the measurement time plus the self-calibration time (about 130 ms) before exporting the measurement value.


Using the :READ? Command while Continuous Measurement is Disabled

Internal Trigger Case

External Trigger Case

TRIG Signal Applied

Use this method to measure (and export) in synchronization with the PC or external trigger signal. Measurement time can be minimized.

9.9 Sample Programs

The method to write these programs using Visual Basic 5.0, 6.0 or Visual Basic 2005 are explained below (p. 196).

Visual Basic is a registered trademark of Microsoft Corporation.

Using Visual Basic 5.0 or 6.0

These sample programs are created with Microsoft Visual Basic 5.0 and 6.0.

The following are used for communication.

For RS-232C communication: MSComm (Visual Basic Professional Edition)

For GP-IB communication: National Instruments GP-IB Board, Driver and Module for Visual Basic

During communications, the terminator setting is supposed to be as follows:

RS-232C: CR+LF

GP-IB: LF

RS-232C Communication

(Using Microsoft Visual Basic Professional MSComm)

Simple Resistance Measurement

Imports measurement values 10 times, and saves measurements in a text file.

```

Private Sub MeasureSubRS()
Dim recvstr As String
Dim i As Integer

MSComm1.Settings = "9600,n,8,1"
MSComm1.PortOpen = True
Open App.Path & "\data.csv" For Output As #1

MSComm1.Output = ":TRIG:SOUR IMM" & vbCrLf
MSComm1.Output = ":INIT:CONT ON" & vbCrLf
For i = 1 To 10
    MSComm1.Output = ":FETCH?" & vbCrLf
    recvstr = ""
    While Right(recvstr, 1) <> Chr(10)
        recvstr = recvstr + MSComm1.Input
        DoEvents
    Wend
    recvstr = Left(recvstr, Len(recvstr) - 2)
    Print #1, Str(i) & "," & recvstr
Next

Close #1
MSComm1.PortOpen = False
End Sub

```

■ Measure Resistance by PC Key

Measures and imports by key input on the PC, and saves measurements in a text file.

```

Private Sub MeasureReadSubRS()
  Dim recvstr As String
  Dim i As Integer

  MSComm1.Settings = "9600,n,8,1"           ' Receiving char string
  MSComm1.PortOpen = True                   ' Communication port setting
  Open App.Path & "data.csv" For Output As #1 ' Open a port
                                              ' Open a text file to save

  MSComm1.Output = ":TRIG:SOUR IMM" & vbCrLf ' Select internal trigger
  MSComm1.Output = ":INIT:CONT OFF" & vbCrLf ' Continuous measurement OFF
  For i = 1 To 10
    'Wait for PC key input
    'Create a key input check routine to set InputKey() = True when a key is pressed
    Do While 1
      If InputKey() = True Then Exit Do
      DoEvents
    Loop

    'After confirming key input, measure once, and read the measurement value
    MSComm1.Output = ":READ?" & vbCrLf           ' Send ":READ?" to measure and import the mea-
                                              ' surement
    recvstr = ""                                 ' From here on, continue receiving until an LF code is
                                              ' reached

    While Right(recvstr, 1) <> Chr(10)
      recvstr = recvstr + MSComm1.Input
      DoEvents
    Wend
    recvstr = Left(recvstr, Len(recvstr) - 2)      ' Delete the terminator (CR+LF)
    Print #1, Str(i) & "," & recvstr               ' Write to the file
  Next

  Close #1
  MSComm1.PortOpen = False
End Sub

```

■ External Trigger Measurement 1

Measure and import according to the external triggering of the instrument (**F4** [MANU] key or TRIG signal input), and save the measurements in a text file.

```

Private Sub MeasureTrigSubRS()
Dim recvstr As String
Dim i As Integer

MSComm1.Settings = "9600,n,8,1"                                ' Receiving char string
MSComm1.PortOpen = True                                         ' Communication port setting
Open App.Path & "data.csv" For Output As #1                  ' Open a port
                                                               ' Open a text file to save

MSComm1.Output = ":TRIG:SOUR EXT" & vbCrLf
MSComm1.Output = ":INIT:CONT OFF" & vbCrLf
For i = 1 To 10
    MSComm1.Output = ":READ?" & vbCrLf                           ' Select external trigger
                                                               ' Continuous measurement OFF
                                                               'Send ":READ?" to measure and import the measurement

    recvstr = ""                                                 ' From here on, continue receiving until an LF code is reached

    While Right(recvstr, 1) <> Chr(10)
        recvstr = recvstr + MSComm1.Input
        DoEvents
    Wend
    recvstr = Left(recvstr, Len(recvstr) - 2)                     ' Input a trigger signal to the TRIG input pin of the EXT. I/O connector.
    Print #1, Str(i) & "," & recvstr                                ' Delete the terminator (CR+LF)
                                                               ' Write to the file
Next

Close #1
MSComm1.PortOpen = False
End Sub

```

■ External Trigger Measurement 2

Import according to the external triggering of the instrument (**F4** [MANU] key or TRIG signal input), and save the measurements in a text file.

(The instrument imports the most recent measurement at the trigger input timing in the continuous measurement state.)

```

Private Sub MeasureTrig2SubRS()
Dim recvstr As String
Dim i As Integer

MSComm1.Settings = "9600,n,8,1"           ' Receiving char string
MSComm1.PortOpen = True
Open App.Path & "data.csv" For Output As #1

MSComm1.Output = ":TRIG:SOUR IMM" & vbCrLf
MSComm1.Output = ":INIT:CONT ON" & vbCrLf

' Clear confirmation of Ext. I/O TRIG input
MSComm1.Output = ":IO:IN?" & vbCrLf
recvstr = ""
While Right(recvstr, 1) <> Chr(10)
    recvstr = recvstr + MSComm1.Input
    DoEvents
Wend

For i = 1 To 10
    ' Wait for Ext. I/O TRIG input
    Do While 1
        MSComm1.Output = ":IO:IN?" & vbCrLf
        recvstr = ""
        While Right(recvstr, 1) <> Chr(10)
            recvstr = recvstr + MSComm1.Input
            DoEvents
        Wend
        If Left(recvstr, 1) = "1" Then Exit Do
        DoEvents
    Loop

    MSComm1.Output = ":FETCH?" & vbCrLf           ' Send ":FETCH?" to import the most recent measurement

    recvstr = ""                                    ' From here on, continue receiving until an LF code is reached

    While Right(recvstr, 1) <> Chr(10)
        recvstr = recvstr + MSComm1.Input
        DoEvents
    Wend
    recvstr = Left(recvstr, Len(recvstr) - 2)      ' Delete the terminator (CR+LF)
    Print #1, Str(i) & "," & recvstr               ' Write to the file
    Next

    Close #1
    MSComm1.PortOpen = False
End Sub

```

9.9 Sample Programs

■ Set Measurement Conditions

Sets the measurement conditions.

```
'Setting measurement conditions
'Setting instrument measurement conditions
' Function: Resistance Measurement
'Range: 1Ω
' Sampling: FAST
' Trigger: External trigger
' Comparator enabled, REF% mode, reference value 1Ω, tolerance +1.0% to -1.5%, beeper sounds when High or Low
Private Sub SettingsSubRS()
MSComm1.Settings = "9600,n,8,1"
MSComm1.PortOpen = True

MSComm1.Output = ":FUNC RES" & vbCrLf
MSComm1.Output = ":RES:RANG 1E+0" & vbCrLf
MSComm1.Output = ":SPEE FAST" & vbCrLf
MSComm1.Output = ":TRIG:SOUR EXT" & vbCrLf
MSComm1.Output = ":INIT:CONT ON" & vbCrLf
MSComm1.Output = ":CALC:LIM:MODE REF" & vbCrLf
MSComm1.Output = ":CALC:LIM:BEEP HL" & vbCrLf
MSComm1.Output = ":CALC:LIM:REF 1E+0" & vbCrLf
MSComm1.Output = ":CALC:LIM:PERC 1.0, -1.5" & vbCrLf
MSComm1.Output = ":CALC:LIM:STAT ON" & vbCrLf

MSComm1.PortOpen = False
End Sub
```

' Communication port setting
' Open a port

' Select Resistance function
' Select 1000 mΩ range
' Select FAST sampling
' Select external trigger
' Continuous measurement ON
' From here on, comparator settings

' Comparator ON

GP-IB Communications

(Using GP-IB Board of National Instruments)

■ Simple Resistance Measurement

Imports measurement values 10 times, and saves measurements in a text file.

```

Private Sub MeasureSub()
Dim buffer As String * 20
Dim recvstr As String
Dim pad As Integer
Dim gpibad As Integer
Dim timeout As Integer
Dim ud As Integer
Dim i As Integer

pad = 0
gpibad = 1
timeout = T10s

Call ibfind("gpib0", 0)
Call ibdev(pad, gpibad, 0, timeout, 1, 0, ud)
Call SendIFC(pad)
Open App.Path & "\data.csv" For Output As #1

Call Send(pad, gpibad, ":TRIG:SOUR IMM", NLend)
Call Send(pad, gpibad, ":INIT:CONT ON", NLend)
For i = 1 To 10
    Call Send(pad, gpibad, ":FETCH?", NLend)

    Call Receive(pad, gpibad, buffer, STOPend)
    recvstr = Left(buffer, InStr(1, buffer, Chr(10)) - 1)
    Print #1, Str(i) & "," & recvstr
Next

Close #1
Call ibonl(pad, 0)
End Sub

```

' Receiving buffer
 ' Receiving char string
 ' Controller address
 ' Device address
 ' Timeout period
 ' State (unused)

 ' Board address 0
 ' RM3542C address 1
 ' Timeout about 10 s

 ' Initialize GP-IB

 ' Open a text file to save

 ' Select internal trigger
 ' Continuous measurement ON

 ' Send ":FETCH?" to import the most recent measurement
 ' Receive

 ' Write to the file

9.9 Sample Programs

■ Measure Resistance by PC Key

Measures and imports by key input on the PC, and saves measurements in a text file.

```

Private Sub MeasureReadSub()
Dim buffer As String * 20
Dim recvstr As String
Dim pad As Integer
Dim gpibad As Integer
Dim timeout As Integer
Dim ud As Integer
Dim i As Integer

pad = 0
gpibad = 1
timeout = T10s

Call ibfind("gpib0", 0)
Call ibdev(pad, gpibad, 0, timeout, 1, 0, ud)
Call SendIFC(pad)
Open App.Path & "\data.csv" For Output As #1

Call Send(pad, gpibad, ":TRIG:SOUR IMM", NLend)
Call Send(pad, gpibad, ":INIT:CONT OFF", NLend)
For i = 1 To 10
    'Wait for PC key input
    'Create a key input check routine to set InputKey() = True when a key is pressed
    Do While 1
        If InputKey() = True Then Exit Do
        DoEvents
    Loop

    'After confirming key input, measure once, and read the measurement value
    Call Send(pad, gpibad, ":READ?", NLend)
    ' Send ":READ?" to measure and import the measurement

    Call Receive(pad, gpibad, buffer, STOPPend)
    recvstr = Left(buffer, InStr(1, buffer, Chr(10)) - 1)
    Print #1, Str(i) & "," & recvstr
    ' Write to the file
Next

Close #1
Call ibonl(pad, 0)
End Sub

```

■ External Trigger Measurement 1

Measure and import according to the external triggering of the RM3542C (**F4** [MANU] key or the TRIG signal input), and save the measurements in a text file.

```

Private Sub MeasureTrigSub()
Dim buffer As String * 20
Dim recvstr As String
Dim pad As Integer
Dim gpibad As Integer
Dim timeout As Integer
Dim ud As Integer
Dim i As Integer

pad = 0
gpibad = 1
timeout = T100s

Call ibfind("gpib0", 0)
Call ibdev(pad, gpibad, 0, timeout, 1, 0, ud)
Call SendIFC(pad)
Open App.Path & "\data.csv" For Output As #1

Call Send(pad, gpibad, ":TRIG:SOUR EXT", NLend)
Call Send(pad, gpibad, ":INIT:CONT OFF", NLend)
For i = 1 To 10
    Call Send(pad, gpibad, ":READ?", NLend)

    Call Receive(pad, gpibad, buffer, STOPend)
    recvstr = Left(buffer, InStr(1, buffer, Chr(10)) - 1)
    Print #1, Str(i) & "," & recvstr
Next

Close #1
Call ibonl(pad, 0)
End Sub

```

■ External Trigger Measurement 2

Import according to the external triggering of the RM3542C (**F4** [MANU] key or the TRIG signal input), and save the measurements in a text file. (The instrument imports the most recent measurement at the trigger input timing in the continuous measurement state.)

```

Private Sub MeasureTrig2Sub()
Dim buffer As String * 20
Dim recvstr As String
Dim pad As Integer
Dim gpibad As Integer
Dim timeout As Integer
Dim ud As Integer
Dim i As Integer

pad = 0
gpibad = 1
timeout = T100s

Call ibfind("gpib0", 0)
Call ibdev(pad, gpibad, 0, timeout, 1, 0, ud)
Call SendIFC(pad)
Open App.Path & "\data.csv" For Output As #1

Call Send(pad, gpibad, ":TRIG:SOUR IMM", NLend)
Call Send(pad, gpibad, ":INIT:CONT ON", NLend)

'Clear confirmation of Ext. I/O TRIG input
Call Send(pad, gpibad, ":IO:IN?", NLend)
Call Receive(pad, gpibad, buffer, STOPend)
recvstr = Left(buffer, InStr(1, buffer, Chr(10)) - 1)
For i = 1 To 10
    'Wait for Ext. I/O TRIG input
    Do While 1
        Call Send(pad, gpibad, ":IO:IN?", NLend)
        Call Receive(pad, gpibad, buffer, STOPend)
        If Left(buffer, 1) = "1" Then Exit Do
        DoEvents
    Loop

    Call Send(pad, gpibad, ":FETCH?", NLend)
    Call Receive(pad, gpibad, buffer, STOPend)
    recvstr = Left(buffer, InStr(1, buffer, Chr(10)) - 1)
    Print #1, Str(i) & "," & recvstr
Next

Close #1
Call ibonl(pad, 0)
End Sub

```

' Receiving buffer
 ' Receiving char string
 ' Controller address
 ' Device address
 ' Timeout period
 ' State (unused)

 ' Board address 0
 ' RM3542C address 1
 ' Timeout 100 s (because of the external trigger wait state)

 ' Initialize GP-IB

 ' Open a text file to save

 ' Select internal trigger
 ' Continuous measurement ON

■ Set Measurement State

Sets up the measurement setting state.

```

'Setting measurement conditions
'Setting instrument measurement conditions
' Function: Resistance Measurement
' Range: 1Ω
' Sampling: FAST
' Trigger: External trigger
' Comparator enabled, REF% mode, reference value 1 Ω, tolerance +1.0% to -1.5%, beeper sounds when High or Low
Private Sub SettingsSub()
    Dim pad As Integer
    Dim gpibad As Integer
    Dim timeout As Integer
    Dim ud As Integer

    pad = 0
    gpibad = 1
    timeout = T10s

    Call ibfind("gpib0", 0)
    Call ibdev(pad, gpibad, 0, timeout, 1, 0, ud)
    Call SendIFC(pad)

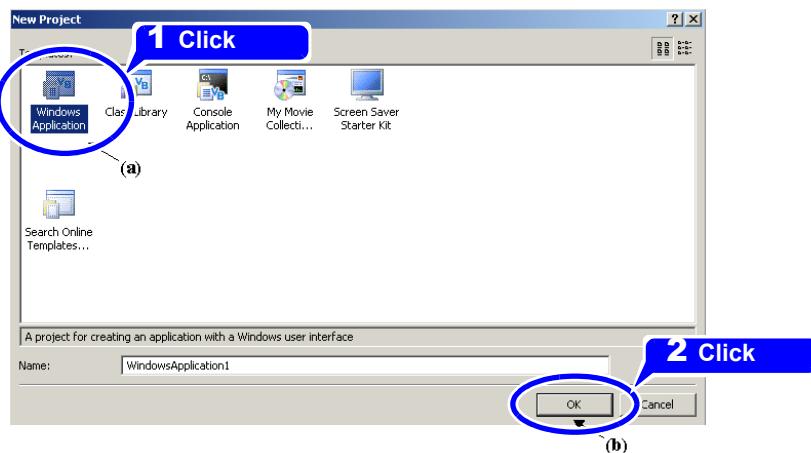
    Call Send(pad, gpibad, ":FUNC RES", NLend)
    Call Send(pad, gpibad, ":RES:RANG 1E+0", NLend)
    Call Send(pad, gpibad, ":SPEE FAST", NLend)
    Call Send(pad, gpibad, ":TRIG:SOUR EXT", NLend)
    Call Send(pad, gpibad, ":INIT:CONT ON", NLend)
    Call Send(pad, gpibad, ":CALC:LIM:MODE REF", NLend)
    Call Send(pad, gpibad, ":CALC:LIM:BEEP HL", NLend)
    Call Send(pad, gpibad, ":CALC:LIM:REF 1E+0", NLend)
    Call Send(pad, gpibad, ":CALC:LIM:PERC 1.0, -1.5", NLend)
    Call Send(pad, gpibad, ":CALC:LIM:STAT ON", NLend)

    Call ibonl(pad, 0)
End Sub

```

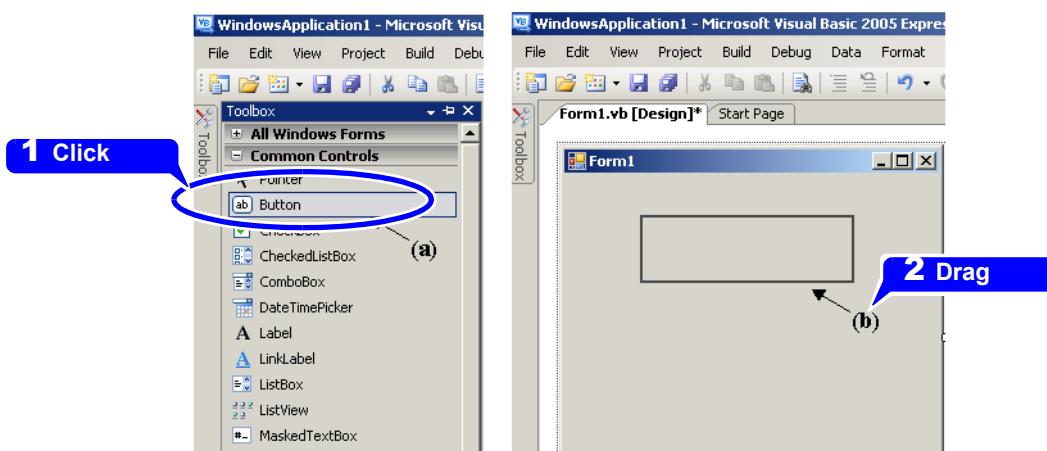
Create with Visual Basic 2005

This section describes an example of how to use the Windows development language, Visual Basic 2005 Express Edition to operate the instrument from a PC via RS-232C, to incorporate measurement values and save measurement values to a file.

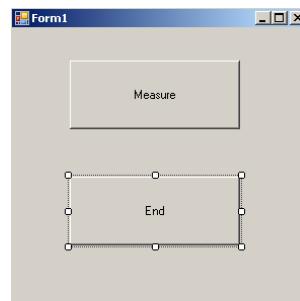

Visual Basic 2005 is referred to as VB2005 below.

NOTE

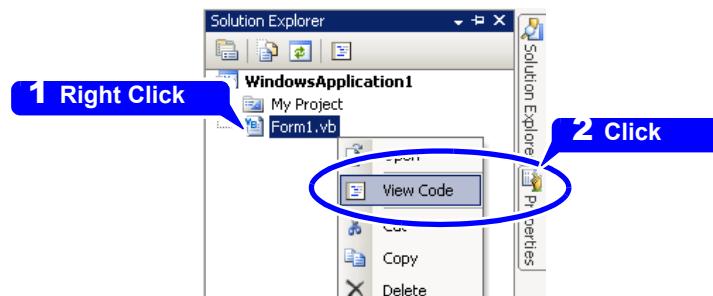
Depending on the environment of the PC and VB2005, the procedure may differ slightly from the one described here. For a detailed explanation on how to use VB2005, refer to the instruction manual or Help of VB2005.

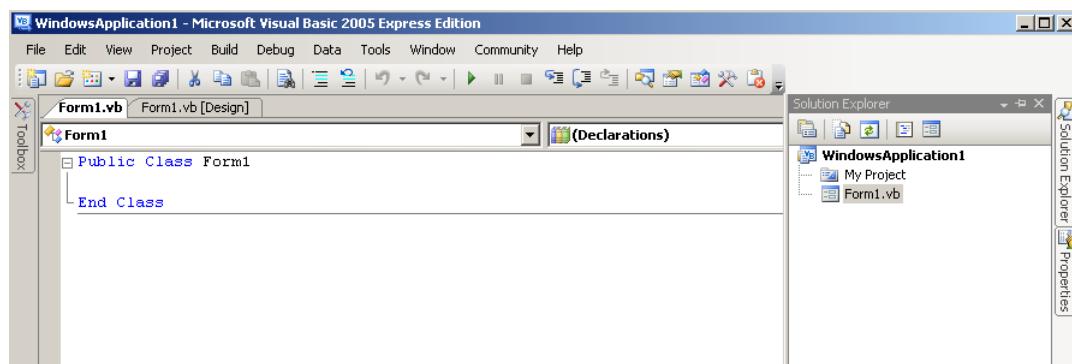

1

Start VB2005. From [File]-[New Project], select [Windows application] and click the [OK] button.



2


Click the common control [Button] icon, and drag the mouse over the form layout screen to paste the button.


3 Use the method in step 2 to create another button, and edit the Text in the property window of each button to appear as shown in the diagram.

4 Right-click [Form1] in the solution explorer, and select [View Code].

Follow the procedure below so that the VB2005 window becomes as shown in the diagram below. Write a program referring to the Sample program, and execute the program.

Sample Programs (Visual Basic 2005)

Shown below is a sample program which can be used to enact RS-232C communication with VB2005, set the RM3542C measurement conditions, read measurement results and then save them to file.

The sample program will be written in the following manner.

Creation Procedure (Visual Basic 2005) description	Write using sample program
Button created to begin measurement	Button1
Button created to close application	Button2

When the [Measure] button is pressed, the RM3542C takes 10 measurements and writes the measurement values to a "data.csv" file.

When the [End] button is pressed the program closes.

The following program is written entirely in [Form1] code.

```

Imports System
Imports System.IO
Imports System.IO.Ports

Public Class Form1
    - Perform the process to be performed when Button1 is pressed
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
        Dim recvstr As String
        Dim i As Integer

        Try
            Button1.Enabled = False
            ' Disable the buttons during communication .....(a)
            Button2.Enabled = False
            Dim sp As New SerialPort("COM1", 9600, Parity.None, 8, StopBits.One) ' Communication port setting.....(b)
            sp.NewLine = vbCrLf
            ' Terminator setting .....(c)
            sp.ReadTimeout = 2000
            ' Time out 2 seconds .....(d)
            sp.Open()
            ' Open port
            SendSetting(sp)
            ' Settings of the instrument
            FileOpen(1, "data.csv", OpenMode.Output)
            ' Create a text file to be saved .....(e)
            For i = 1 To 10
                sp.WriteLine(":FETCH?")
                ' Begin the measurement and read the measurement results command(f)
                recvstr = sp.ReadLine()
                ' Read the measurement results
                WriteLine(1, recvstr)
                ' Write to file
            Next i
            FileClose(1)
            ' Close file
            sp.Close()
            ' Close port
            Button1.Enabled = True
            Button2.Enabled = True
        Catch ex As Exception
            MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
        End Try
    End Sub

    ' Set the measurement conditions
    Private Sub SendSetting(ByVal sp As SerialPort)
        Try
            sp.WriteLine(":TRIG:SOUR IMM") ' Select internal trigger
            sp.WriteLine(":INIT:CONT ON") ' Continuous measurement ON
        Catch ex As Exception
            MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
        End Try
    End Sub

    - Close the program when Button2 is pressed
    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click
        Me.Dispose()
    End Sub
End Class

```

- (a) This disables the "Measure" and "End" buttons such that they cannot be pressed during communication.
- (b) Matches the RM3542C communication conditions and the computer usage conditions.
 - The port to be used on the computer: 1
 - Transmission speed: 9600 bps
 - Parity: none
 - Data length: 8 bit
 - Stop bit: 1 bit
- (c) Sets CR + LF as the terminator indicating the end of the sent and received character string.
- (d) Sets the reading operation time to 2 seconds.
- (e) Opens the "data.csv" file. However, if a file with the same name exists,
the previous "data.csv" is deleted and a new file is created.
- (f) Sends the command to the RM3542C to perform one measurement and return that measurement result to the computer.

9.10 Device Compliance Documents

"Information on compliance to standards" based on the IEEE488.2 standard

Item	Description
1. IEEE 488.1 interface functions	<p>See: "GP-IB Specifications (Interface Functions) (RM3542C-2 or RM3542C-5)" (p. 124)</p>
2. Operation with a device address other than 0 through 30	A setting outside the 0 to 30 range cannot be performed.
3. Timing of changed device address recognition	A change of address is recognized immediately after changing.
4. Device settings at power on	Status information is cleared. Others will be backed up. However, the header on/off setting, response message separator and terminator are all reinitialized.
5. List of message exchange options	<ul style="list-style-type: none"> Input buffer capacity and operation See: "Input Buffer" (p. 134) <p>Queries to which multiple response message units are returned.</p> <p>:CALCulate:STATistics:NUMBER?2 :CALCulate:STATistics:MAXimum?2 :CALCulate:STATistics:MINimum?2 :CALCulate:STATistics:LIMit?4 :CALCulate:STATistics:DEViation?2 :CALCulate:STATistics:CP?2 :MEMORY:DATA? Number of stored values :CALCulate:LIMit:ABS?2 :CALCulate:LIMit:PERCent?2 :SYSTem:DATE?3 :SYSTem:TIME?3</p> <ul style="list-style-type: none"> Queries producing responses when syntax is checked: All queries produce responses when syntax checking is performed. Whether any queries produce responses when read: There are no queries which produce response messages at the instant they are read in by the controller. Whether any commands are coupled: There are no relevant commands.
6. Summary of functional elements for use when constructing device specific commands, and whether compound commands or program headers can be used:	<p>The followings can be used.</p> <ul style="list-style-type: none"> Program message Program message terminator Program message unit Program message unit separator Command message unit Query message unit Command Program Headers Query Program Header Program data Character program data Decimal program data Compound commands and program headers
7. Buffer capacity limitations for block data	Block data is not used.

Item	Description
8. The summary of the program data elements used in the <expressions> and the deepest nesting level allowable in the sub-expressions (including syntax restrictions imposed by the device)	Sub-expressions are not used. Character data and decimal data are the only program data elements used.
9. Response syntax for queries	See: "9.7 Message Reference" (p. 151)
10. Transmission congestion relating to device-to-device messages which do not conform to the general principles for basic response messages	There are no device to device messages.
11. Response capacity for block data	Block data does not appear in responses.
12. Summary of shared commands and queries used	See: "9.6 Message List" (p. 142)
13. Device state after a calibration query has been completed without any problem	The *CAL? command is not used.
14. Existence/nonexistence of "*DDT" command	The *DDT command is not used.
15. Existence/nonexistence of macro command	Macros are not used.
16. For queries related to identification, an explanation of the response to the "*IDN?" query	See: "Shared Commands" (p. 152)
17. The capacity of the protected user data storage area when the "*PUD" command and the "*PUD?" query are executed	The *PUD command and *PUD? query are not used. Further, there is no user data storage area.
18. Explanation of resources when the "*RDT" command and the "*RDT?" query are used	The *RDT command and *RDT? query are not used. Further, there is no user data storage area.
19. Explanation of conditions which are affected when "*RST", "*LRN?", "*RCL?", and "*SAV" are used	*LRN? , *RCL? and *SAV are not used. The *RST command returns the unit to its initial state. See: "Shared Commands" (p. 152) "Initialization Items" (p. 140)
20. Explanation of the self-testing scope executed as a result of the "*TST?" query	See: " Shared Commands";"*TST?" (p. 152)
21. Explanation of additional organization of the status data used in a device status report	See: "Event Registers" (p. 137)
22. Explanation whether commands are overlapping commands or sequential type commands	All the commands are sequential commands.
23. Description of criterion relating to the functions required when termination message is produced, as a response to each command	Termination occurs when the command has been parsed. The :READ? query finishes when the measurement data is received.

Specifications Chapter 10

Measurement Specifications

LOW POWER: OFF (Four-terminal resistance measurement)	RM3542C-3	0.00000 mΩ (10 mΩ range) to 120.0000 MΩ (total 17 ranges)
	RM3542C-1	0.0000 mΩ (100 mΩ range) to 120.0000 MΩ
	RM3542C-2	(total 16 ranges)
LOW POWER: ON (Low-power four-terminal resistance measurement)	RM3542C-4	0.0000 mΩ (100 mΩ range) to 120.0000 MΩ
	RM3542C-5	(total 10 ranges)
	RM3542C-1	0.000 mΩ (1000 mΩ range) to 1200.000 Ω
	RM3542C-2	(total 6 ranges)
	RM3542C-3	
	RM3542C-4	0.000 mΩ (1000 mΩ range) to 1200.000 Ω
	RM3542C-5	(total 4 ranges)

Measurement method

Measurement item	DC resistance
Measurement signal	Constant current
Measurement method	DC four-terminal
Measurement jacks	BNC female, 22 mm pitch H _{CUR} jack Current sourcing terminal H _{POT} jack High-side voltage detection terminal L _{POT} jack Low-side voltage detection terminal L _{CUR} jack Current detection terminal GUARD jack (measurement ground potential)

Functional specification

(1) Comparator Function

Operation	Compares setting and measurement values
Default state	ON Reference value 0.00 MΩ, Upper limit value 0.000%, Lower limit value 0.000% REF% mode
Setting	ON/ OFF When the BIN measurement function is enabled, forced OFF (RM3542C-3)
Comparator mode	REF% mode/ ABS mode
Judgment	Judgments include any fraction of least-significant display digit Hi Measurement value > upper limit value IN Upper limit value ≥ measurement value ≥ lower limit value Lo Lower limit value > measurement value
Display	Absolute and relative value display Relative value = $\left(\frac{\text{Measurement value}}{\text{Reference value}} - 1 \right) \times 100 [\%]$
Displayable range	-999.999% to +999.999%

REF% Mode

Reference value range	RM3542C-3	0.000 mΩ to 120.00 MΩ (LOW POWER: OFF) 0.0 mΩ to 1200.0 Ω (LOW POWER: ON)
	RM3542C-1	0.00 mΩ to 120.00 MΩ (LOW POWER: OFF)
	RM3542C-2	0.0 mΩ to 1200.0 Ω (LOW POWER: ON)
Upper/Lower limit ranges	RM3542C-4	0.00 mΩ to 120.00 MΩ (LOW POWER: OFF)
	RM3542C-5	
	RM3542C-3	-9.9999% to +9.9999% (when Upper limit value and Lower limit value are less than 10%) -99.999% to +99.999% (when Upper limit value or Lower limit value is 10% or greater)
	RM3542C-1	-9.999% to +9.999%
	RM3542C-2	(when Upper limit value and Lower limit value are less than 10%)
	RM3542C-4	-99.99% to +99.99%
	RM3542C-5	(when Upper limit value or Lower limit value is 10% or greater)

ABS Mode

Upper/Lower limit ranges	RM3542C-3	0.000 mΩ to 120.00 MΩ (LOW POWER: OFF) 0.0 mΩ to 1200.0 Ω (LOW POWER: ON)
	RM3542C-1	0.00 mΩ to 120.00 MΩ (LOW POWER: OFF)
	RM3542C-2	0.0 mΩ to 1200.0 Ω (LOW POWER: ON)
RM3542C-4	0.00 mΩ to 120.00 MΩ (LOW POWER: OFF)	
RM3542C-5		

(2) BIN Measurement Function (RM3542C-3)

Operation	Comparison judgment between set values and measured values
Default state	OFF Reference value 0.00 MΩ, Upper limit value 0.000%, Lower limit value 0.000%
Setting	ON/ OFF When the comparator function is enabled, forced OFF When the ΔR function is enabled, forced OFF
Comparator mode	REF% mode
Judgment	Judgments include any fraction of least-significant display digit Hi Measurement value > upper limit value IN Upper limit value ≥ measurement value ≥ lower limit value Lo Lower limit value > measurement value
Reference value range	0.000 mΩ to 120.00 MΩ (LOW POWER: OFF) 0.0 mΩ to 1200.0 Ω (LOW POWER: ON)
Upper/Lower limit ranges	-9.9999% to +9.9999% (when Upper limit value and Lower limit value are less than 10%) -99.999% to +99.999% (when Upper limit value or Lower limit value is 10% or greater)
Bin number	0 to 6

(3) Range Switching

Comparator On	As per following table
Comparator Off	The range is selected by Range key
Default setting	100 MΩ range

Reference value (REF%) and upper limit (ABS) ranges	Selected range				
	LOW POWER:OFF			LOW POWER:ON	
	RM3542C-3	RM3542C-1 RM3542C-2	RM3542C-4 RM3542C-5	RM3542C-1 RM3542C-2 RM3542C-3	RM3542C-4 RM3542C-5
0.000 mΩ to 10.009 mΩ	10 mΩ	100 mΩ	100 mΩ	1000 mΩ	1000 mΩ
10.01 mΩ to 100.09 mΩ	100 mΩ				
100.1 mΩ to 1000.9 mΩ	1000 mΩ	1000 mΩ	1000 mΩ	1000 mΩ	1000 mΩ
1.001 Ω to 3.009 Ω	3 Ω	3 Ω	10 Ω	3 Ω	10 Ω
3.010 Ω to 10.009 Ω	10 Ω	10 Ω			
10.01 Ω to 100.09 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω
100.1 Ω to 300.9 Ω	300 Ω	300 Ω	1000 Ω	300 Ω	1000 Ω
301.0 Ω to 1000.9 Ω	1000 Ω	1000 Ω			
1001.0 Ω to 1200.0 Ω	10 kΩ	10 kΩ	10 kΩ	100 kΩ	1000 Ω
1200.0 Ω to 10.009 kΩ					
10.01 kΩ to 30.09 kΩ	30 kΩ	30 kΩ	100 kΩ	10 MΩ	—
30.10 kΩ to 100.09 kΩ	100 kΩ	100 kΩ			
100.1 kΩ to 300.9 kΩ	300 kΩ	300 kΩ	1000 kΩ	100 MΩ	—
301.0 kΩ to 1000.9 kΩ	1000 kΩ	1000 kΩ			
1.001 MΩ to 3.009 MΩ	3 MΩ	3 MΩ	10 MΩ	100 MΩ	—
3.010 MΩ to 10.009 MΩ	10 MΩ	10 MΩ			
10.01 MΩ to 30.09 MΩ	30 MΩ	30 MΩ	100 MΩ	100 MΩ	—
30.10 MΩ to 120.00 MΩ	100 MΩ	100 MΩ			

(4) Low-Power Function

Operation	Changes resistance measurement current (setting affects all ranges)
Default setting	LOW POWER: OFF
Setting	ON/ OFF

(5) Delay Setting**DELAY1**

Operation	Adjusts the mechanical delay of trigger input and probing (setting affects all ranges)
Default setting	0.0 ms
Setting range	0.0 ms to 100.0 ms

DELAY2

Operation	Adjusts measuring object response (for each range)
Default setting	0.0 ms
Setting range	0.0 ms to 100.0 ms

(6) OVC (Offset Voltage Compensation)

Operation	Reverses measurement current polarity to eliminate offset voltage effects	
Applicable ranges	RM3542C-3	LOW POWER OFF: 10 mΩ range to 10 Ω range LOW POWER ON: All ranges
	RM3542C-1	
	RM3542C-2	LOW POWER OFF: 100 mΩ range to 10 Ω range
	RM3542C-4	LOW POWER ON: All ranges
	RM3542C-5	

(7) Integration Time Setting

Operation	Sets the detection voltage acquisition time span (for each range)	
Default setting	As per following table	
Setting range	0.1 ms to 100.0 ms, PLC ^{*1} setting 1 to 5PLC: 50 Hz, 1 to 6PLC: 60 Hz *1. PLC: Power Line Cycle, One power line cycle (at 50 or 60 Hz)	

Table 2. Integration Time Settings

Range	LOW POWER: OFF			LOW POWER: ON			OVC	
	Integration time			OVC	Integration time			
	FAST	MED	SLOW		FAST	MED		
10 mΩ ^{*1}	0.5 ms	5.0 ms	1 PLC	ON	-	-	-	
100 mΩ	0.5 ms	5.0 ms	1 PLC	ON	-	-	-	
1000 mΩ	0.3 ms	2.5 ms	1 PLC	ON	0.5 ms	5.0 ms	1 PLC	
3 Ω ^{*2}	0.3 ms	2.5 ms	1 PLC	ON	0.5 ms	5.0 ms	1 PLC	
10 Ω	0.3 ms	2.5 ms	1 PLC	ON	0.5 ms	5.0 ms	1 PLC	
100 Ω	0.3 ms	3.0 ms	1 PLC	OFF	0.3 ms	2.5 ms	1 PLC	
300 Ω ^{*2}	0.3 ms	3.0 ms	1 PLC	OFF	0.3 ms	2.5 ms	1 PLC	
1000 Ω	0.3 ms	3.0 ms	1 PLC	OFF	0.3 ms	2.5 ms	1 PLC	
10 kΩ	0.3 ms	3.0 ms	1 PLC	OFF	-	-	-	
30 kΩ ^{*2}	0.3 ms	3.0 ms	1 PLC	OFF	-	-	-	
100 kΩ	0.5 ms	3.0 ms	1 PLC	OFF	-	-	-	
300 kΩ ^{*2}	0.5 ms	3.0 ms	1 PLC	OFF	-	-	-	
1000 kΩ	1.5 ms	5.0 ms	1 PLC	OFF	-	-	-	
3 MΩ ^{*2}	1.5 ms	5.0 ms	1 PLC	OFF	-	-	-	
10 MΩ	2.5 ms	1 PLC	1 PLC	OFF	-	-	-	
30 MΩ ^{*2}	2.5 ms	1 PLC	1 PLC	OFF	-	-	-	
100 MΩ	1 PLC	2 PLC	4 PLC	OFF	-	-	-	

When OVC is enabled, two measurements are performed at the above integration times.

*1. RM3542C-3

*2. RM3542C-1, RM3542C-2, RM3542C-3

(8) Average Function (RM3542C-3)

Operation	For internal trigger measurement, a moving average is used; for external trigger measurement, a simple average is used (by range).	
Default setting	OFF/16 Times	
Setting range	Function	ON/OFF
	Average count	2 to 32 Times

(9) Faulty Measurement Detection

10

Out-of-Range Detection Function

Operation	Indicates under- or over-range values in the following conditions: <ul style="list-style-type: none"> Measurement value is outside of the measurement range The relative calculation value is outside of the display range Measurement value is outside of the A/D converter input range The zero-adjusted value is outside of the display range Ex.: Zero-adjustment in the 1 Ω range with 0.5 Ω zero-adjustment in effect, measuring 0.1 Ω gives a calculation result of -0.4 Ω, which is outside of the display range.
------------------	---

Contact Check Function

Operation	Checks the connections between H _{POT} and H _{CUR} , and between L _{POT} and L _{CUR} terminals (for each range)
Default setting	ON, 200 Ω

Contact Check Function

Setting	ON/ OFF
Threshold setting	50 Ω/ 100 Ω/ 150 Ω/ 200 Ω/ 300 Ω/ 400 Ω/ 500 Ω (reference value)

Current Monitor Function

Operation	Detects faults that can obstruct normal measurement current. This function cannot be disabled.
-----------	--

Voltage Level Monitor Function

Operation	Detects an error when the detection voltage is unstable (for each range)		
Default setting	RM3542C-1	ON, NORMAL	
	RM3542C-2	(LOOSE is the default only for the 100 MΩ range)	
	RM3542C-3		
Setting	ON/ OFF/ ALLOFF		
Threshold setting	LOOSE NORMAL SEVERE		

Comparator Judgment and Display Indications

Table 3. Measurement States and Display Indications

		Current monitor	
		PASS	FAIL
Contact check voltage level monitor	PASS	Measurement value is displayed Normal judgment	Out-of-range display Hi/Lo judgment
	FAIL	Contact Error No judgment	Contact Error No judgment

(10) Probe Short-Circuit Detection Function

Operation	An error is detected after a certain period following the output of EOM signal output if a connection between H _{POT} and H _{CUR} or L _{POT} and L _{CUR} terminals lasting more than 1 ms is found.
Default setting	OFF, 5 ms
Setting	Function ON/ OFF Probe short-circuit detection time: 1 ms to 100 ms
Threshold	500 Ω fixed (reference value)

(11) Contact Improvement Function

Operation	Allows a contact improvement current (by applying oxidized film breakdown voltage) to flow between H_{POT} and H_{CUR} , and L_{POT} and L_{CUR} terminals (for each range). The PULSE setting applies the contact improvement current for only 100 μ s or 300 μ s before measuring.	
	RM3542C-1	When VOLT LIMIT is ON or LOW POWER is ON, applies the contact improvement current for only 300 μ s before measuring.
	RM3542C-2	
	RM3542C-3	
Default setting	RM3542C-3	ON, Current-limited to 35 mA (10 m Ω range to 100 k Ω range, LOW POWER: ON for all ranges) PULSE, Current-limited to 35 mA (300 k Ω range to 100 M Ω range)
	RM3542C-1	ON, Current-limited to 35 mA (100 m Ω range to 100 k Ω range, LOW POWER: ON for all ranges)
	RM3542C-2	PULSE, Current-limited to 35 mA (300 k Ω range to 100 M Ω range)
	RM3542C-4	ON, Current-limited to 35 mA (100 m Ω range to 100 k Ω range)
	RM3542C-5	PULSE, Current-limited to 35 mA (1000 k Ω range to 100 M Ω range)
Setting	OFF/ ON/ PULSE	
Applied voltage	20 V max. (100 k Ω and lower ranges) 15 V max. (300 k Ω and higher ranges)	
Current limit	17 mA, 25 mA, 35 mA, 50 mA (peak current reference value)	

(12) Current Mode Setting Function

Operation	Sets whether or not to apply the measurement current while measurement is not being carried out. (for each range) The CONT (continuous) setting is available only when the Contact Improvement function is disabled.
Default setting	PULSE
Setting	CONT/ PULSE

(13) Stage Mismatch Prevention Function (RM3542C-1, RM3542C-2 or RM3542C-3)

Operation	To prevent use of the wrong stage, a stage number is assigned to the resistance meter. The output pin of the EXT. I/O EOM signal varies depending on the stage number setting. OFF, STG2nd :28 pin STG1st :14 pin
Default setting	OFF
Setting	OFF/ STG1st/ STG2nd

(14) Scaling Function (RM3542C-1, RM3542C-2 or RM3542C-3)

Operation	Corrects measured values using a linear expression "y = ax + b" (setting affects all ranges)
Default setting	OFF, a = 1, b = 0
Setting	ON/OFF
Coefficient a	0.50000 to 2.00000
Offset b	±0.0000 mΩ to ±99.9999 MΩ

(15) Zero Adjustment Function

Operation	Nullifies wiring resistance when measuring with the two-terminal method.
Default setting	OFF, 0 Ω
Adjustment range	-1 Ω to 10 Ω

(16) Measurement-Start Logic Setting Function

Operation	Sets <u>TRIG</u> signal logic for EXT. I/O
Default setting	ON edge
Setting	OFF edge/ ON edge

(17) EOM Pulse Width Setting Function

Default setting	PULSE Pulse width 5 ms
Setting	Mode: HOLD/ PULSE Pulse width: 1 ms to 100 ms

(18) Data Output Function

Operation	Measurement values are automatically output when measurement is finished.
Default setting	OFF
Setting	ON/ OFF

(19) Percentage Output Function (RM3542C-1, RM3542C-2 or RM3542C-3)

Operation	Outputs measured values as a percentage via communications commands.
Default setting	OFF
Setting	ON/ OFF

(20) Output Data Format Setting

Default setting	ASCII
Setting	ASCII/ BINARY

(21) Comparator Beeper Setting Function

Default setting	OFF, Hi or Lo
Audibility	ON/ OFF
Signaling criteria	Hi/ Lo/ Hi or Lo/ IN

(22) Key-Press Beeper Setting Function

Default setting	ON
Setting	ON/ OFF

(23) Clock Function

Auto calendar, auto leap year, 24-hour clock	
Accuracy	Approx. 4 minutes/month
Backup battery life	Approx. 10 years (from factory shipping)

(24) Power Line Frequency Setting

Operation	Selects the line voltage frequency
Default setting	AUTO (auto-detect upon power on and resetting)
Setting	AUTO (50 Hz or 60 Hz, fixed)/ 50 Hz / 60 Hz

(25) Reset Functions

Reset

Operation	Resets settings (except the clock) to factory defaults
*RST (Remote command)	
Operation	Resets settings (except the clock and interface) to factory defaults When power is restored, reverts to the settings before *RST was sent

(26) Self-Calibration Function

Operation	Compensates for offset voltage and gain of measurement circuit
Compensation timing	When setting is changed and once every 10 minutes

(27) Memory Function

Operation	Measurement values are stored by an EXT. I/O <u>TRIG</u> signal or by pressing the F4 [MA-NU]* button * Displayed when EXT is selected on the [MENU]-[TRG] selection screen
Default setting	OFF
Setting	ON/ OFF
Memory capacity	30,000 (volatile memory, no backup)

(28) Auto-Memory Function

Operation	Acquire once the measured value has stabilized using internal continuous trigger manual measurement. A beep will sound once the set count is reached. Memory is cleared when acquired data has been transferred by RS-232C During Auto-Memory operation, the statistical calculation function is always enabled. The voltage level monitor function is disabled. When the BIN measurement function is enabled, only count values are enabled (RM3542C-3).
Default setting	OFF/ 10
Setting	ON/ OFF Number of measurements stored: 1 to 99

(29) Statistical Calculation Function

Operation	Statistical calculations are performed on measurement values in memory. When the BIN measurement function is enabled, process capability index calculations are disabled (RM3542C-3).
Default setting	OFF
Setting	ON/ OFF

Calculations	Total data count, Mean, Minimum value (sample no.), Maximum value (sample no.), Standard deviation of sample, Population standard deviation, and Process capability indices, Pass (IN) and Fail (HI/IN) judgment counts.
---------------------	--

(30) Settings Monitor Function

Operation	Measurement settings of two instruments are compared, and if different, an alarm sounds and TRIG signal input is blocked. However, for the first comparator, upper and lower limit values may be less than those of the second within a preset tolerance range.
Default setting	OFF, 1st, 0.000%
Setting	Function: ON / OFF Measurement stages: 1st / 2nd Tolerance range: 0.000% to 9.999%
Compared contents	Comparator threshold, measurement speed

(31) Retry Function

Operation	The Retry function enables measurement to be automatically retried when a measurement fault occurs due to probe chatter. If a measurement fault persists after the specified continuous retry interval, retrying is aborted and the EOM signal is output.
Default setting	ON, 2 ms
Setting	Function ON/ OFF Continuous retry interval 1 ms to 50 ms

(32) Applied Voltage Limiter Function

Operation	Limits the voltage applied for resistance measurement (setting affects all ranges).
Default setting	OFF
Setting	ON/ OFF (5 V)

(33) Jumper Resistance Measurement Support Function (RM3542C-1, RM3542C-2 or RM3542C-3)

Operation	When using the comparator function in ABS mode, restricts the lower limit of the resistance measurement range selected by the range switching function.
Default setting	OFF, 1000 mΩ range
Setting	Function ON/ OFF Lower limit range: 1000 mΩ range / 10 Ω range / 100 Ω range

(34) Preset Function (RM3542C-1, RM3542C-2 or RM3542C-3)

Operation	SAVE Saves the instrument's settings to the reserved area. LOAD Applies the settings saved in the reserved area to the instrument.
Default setting	The reserved area contains the factory default settings.

(35) ΔR Function (RM3542C-3)

Operation	Uses measured values from another instrument to calculate the difference between the two values and performs a comparative judgment.
Default setting	OFF, 1st, 32, OFF, OFF, 5
Settings	Function ON/ OFF Stage: First/second Stage shift: 1 to 99 Second-stage trigger when first stages yields FAIL result: ON/OFF First-stage ERR: ON/OFF Fail count: 1 to 99

(36) Self-Test Function

At power-on	ROM/RAM check, non-volatile ROM checksum test
--------------------	---

(37) Trigger Source Setting

Default setting	EXT (external)
Settings	INT (Internal)/ EXT (external)

(38) Measurement Speed

Default setting	FAST
Setting	FAST/ MED/ SLOW

(39) Key-Lock Function

Operation	Disables operation of unneeded keys.
Setting	(1) Disables all except the comparator setting and cancel keys (2) Disables all except the cancel key (3) All front panel keys are disabled when the <u>KEY_LOCK</u> signal is received.

(40) Remote Function

Operation	During REMOTE operation by RS-232C or GP-IB (RM3542C-2 or RM3542C-5), all front panel operations are disabled.
Cancellation methods	F1 [LOCAL] key By RS-232C :SYSTem:LOCAL command By GP-IB GTL command reset (RM3542C-2 or RM3542C-5) At power-on

Interface Specification

(1) Display

LCD type	Monochrome graphical LCD, 240 x 64
Backlight	White LED Brightness adjustment range 0 to 100% When using EXT trigger source, brightness is automatically reduced when keys are not used. Brightness recovers upon front panel key operation.
Contrast	Adjustment range 0 to 100%

(2) Keys

∅, REF%, ABS, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +/−, BACK SPACE, Period, ENTER, ESC, mΩ, Ω, kΩ, MΩ, %, ▼, ▲, ►, ◀, F1, F2, F3, F4

(3) External Interface

EXT. I/O

Input Signals	TRIG, HOLD, KEY_LOCK, 0ADJ, PRINT, CAL, PRB_CHECK When the ΔR function is enabled (RM3542C-3) TRIG, HOLD, KEY_LOCK, CLR_DATA, PRINT, CAL, PRB_CHECK Optocoupler-isolated, no-voltage contact inputs Effective voltage: 0 V to 1 V (Input current 3 mA (reference value)) Invalid voltage: OPEN or 5 V to 30 V
Output Signals	HI, IN, LO, EOM, INDEX, ERR, PRB_SHORT, CE_HI, CE_LO When the BIN measurement function is enabled (RM3542C-3) BIN1, BIN2, BIN3, EOM, BIN0, ERR, BIN4, BIN5, BIN6, OB Optocoupler-isolated, Nch open drain output Load voltage: 30 V DC max. Residual voltage: 1.0 V max. (output current: 50 mA) Output current: 50 mA max./ch.
External power output	(1) Voltage/current: 4.5 V to 5 V / 100 mA max. 11 V to 13 V / 20 mA max. •The +5 V and +12 V power supplies cannot be used at the same time. (2) Insulation: Floating from protective ground potential and measurement circuit Insulation rating: Line-to-earth voltage 50 V DC, 30 V rms AC, 42.4 V AC peak or less

RS-232C

Communication contents	Remote control, measurement value output (export)
Transfer method	Asynchronous, Full duplex
Transmission speed	9,600bps (default setting)/ 19,200bps/ 38,400bps
Data bit length	8 bit
Stop bit	1
Parity bit	None
Delimiter	Transmit CR+LF, Receive CR/ CR+LF
Handshaking	No X-flow, no hardware flow
Protocol	Non-procedure
Connector	Male 9-pin D-sub, with #4-40 attachment screws

Printer

Printing Contents	Measured data (PRINT signal input), Total data count, Mean, Minimum value (sample No.), Maximum value (sample No.), Standard deviation of sample, Population standard deviation, and Process capability indices, IN count, Hi count, Lo count, OvrRng count, No. of Measurement faults		
Printing method (RM3542C-1, RM3542C-2 or RM3542C-3)	Default setting Setting	NORMAL, (100), (ALL), (3/L) Functions Number of samplings Printing condition Number of characters	NORMAL/SAMPL 1 to 999 (SAMPL only) ALL/IN (SAMPL only) 1/L / 3/L (SAMPL only)
Communications	<p>Communications method Asynchronous RS-232C</p> <p>Transmission speed 9,600bps</p> <p>Data length 8 bits</p> <p>Stop bit 1 bit</p> <p>Parity bit None</p> <p>Delimiter Transmit CR+LF, Receive CR/ CR+LF</p> <p>Handshake No X-flow, no hardware flow</p>		

GP-IB interface (RM3542C-2 or RM3542C-5)

Communication contents	Remote control
Interface Functions	<p>SH1 All Source Handshake functions are supported.</p> <p>AH1 All Acceptor Handshake functions are supported.</p> <p>T6 Basic talker functions are supported. Serial poll function are supported. No talk-only mode</p> <p>L4 The talker cancel function with MLA (My Listen Address) is supported. Basic listener functions are supported. No listen-only mode.</p> <p>SR1 The listener cancel function with MTA (My Talk Address) is supported.</p> <p>RL1 All Service Request functions are supported.</p> <p>PP0 All Remote/Local functions are supported.</p> <p>DC1 No Parallel Poll function</p> <p>DT1 All Device Clear functions are supported.</p> <p>C0 All Device Trigger functions are supported.</p> <p>No Controller function</p>
Miscellaneous	Conforms to IEEE 488.1

Settings Monitor terminal (SET MONITOR)

Connector	Male 9-pin D-sub, with #4-40 attachment screws
Connection cable	Crossover

Measurement Specifications

(1) Resistance Measurement Accuracy

Conditions of guaranteed accuracy		
Warm-up time	One-year accuracy 90-day accuracy (RM3542C-3)	At least 30 minutes At least 60 minutes
Integration time	Set longer than the initial "Integration Time Setting" (p. 206). In case of default PLC setting is not specified in ms setting.	
Temperature and humidity range for guaranteed accuracy	23°C ±5°C (73°F ±9°F), 80% RH or less	
Guaranteed accuracy period	1 year	

Temperature variation after self-calibration is within ±2°C. From 0°C to 18°C and from 28°C to 40°C, add the following value as temperature coefficient: ± 1/10th of measurement accuracy/°C.

One-year accuracy

LOW POWER: OFF

Range	Max. display *1	f.s.	Measurement accuracy ±(% rdg. + % f.s.)			Measure- ment current *2	Open-circuit voltage
			FAST	MED	SLOW		
10 mΩ*7	12.00000 mΩ	1,000,000 dgt.	0.015 + 0.080	0.015 + 0.030	0.015 + 0.010 ⁶ 0.015 + 0.020	100 mA	20 V max *3, *4, *5
100 mΩ	120.0000 mΩ	1,000,000 dgt.	0.015 + 0.008	0.015 + 0.003	0.015 + 0.002	100 mA	
1000 mΩ	1200.000 mΩ	1,000,000 dgt.	0.012 + 0.003	0.012 + 0.002	0.012 + 0.001	100 mA	
3 Ω*8	3.60000 Ω	300,000 dgt.	0.012 + 0.003	0.012 + 0.002	0.012 + 0.001	33.3 mA	
10 Ω	12.00000 Ω	1,000,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.008 + 0.001	10 mA	
100 Ω	120.0000 Ω	1,000,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.007 + 0.001	10 mA	
300 Ω*8	360.0000 Ω	300,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.007 + 0.001	3.33 mA	
1000 Ω	1200.000 Ω	1,000,000 dgt.	0.008 + 0.003	0.006 + 0.002	0.006 + 0.001	1 mA	
10 kΩ	12.00000 kΩ	1,000,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.007 + 0.001	1 mA	
30 kΩ*8	36.00000 kΩ	300,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.007 + 0.001	333 μA	
100 kΩ	120.00000 kΩ	1,000,000 dgt.	0.010 + 0.003	0.007 + 0.002	0.007 + 0.001	100 μA	
300 kΩ*8	360.00000 kΩ	300,000 dgt.	0.010 + 0.003	0.007 + 0.002	0.007 + 0.001	33.3 μA	
1000 kΩ	1200.00000 kΩ	1,000,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.008 + 0.001	10 μA	
3 MΩ*8	3.60000 MΩ	300,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.008 + 0.001	3.33 μA	
10 MΩ	12.00000 MΩ	1,000,000 dgt.		0.030 + 0.004		1 μA	
30 MΩ*8	36.00000 MΩ	300,000 dgt.		0.030 + 0.010		333 nA	
100 MΩ	120.00000 MΩ	1,000,000 dgt.		0.100 + 0.020		100 nA	

LOW POWER: ON

Range	Max. display *1	f.s.	Measurement accuracy ±(% rdg. + % f.s.)			Measure- ment current *2	Open-circuit voltage
			FAST	MED	SLOW		
1000 mΩ	1200.000 mΩ	1,000,000 dgt.	0.010 + 0.008	0.008 + 0.003	0.008 + 0.002	10 mA	10 V max *3, *5
3 Ω*8	3.60000 Ω	300,000 dgt.	0.010 + 0.008	0.008 + 0.003	0.008 + 0.002	3.33 mA	
10 Ω	12.00000 Ω	1,000,000 dgt.	0.010 + 0.008	0.008 + 0.003	0.008 + 0.002	1 mA	
100 Ω	120.0000 Ω	1,000,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.008 + 0.001	1 mA	
300 Ω*8	360.0000 Ω	300,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.008 + 0.001	333 μA	
1000 Ω	1200.000 Ω	1,000,000 dgt.	0.020 + 0.003	0.008 + 0.002	0.008 + 0.001	100 μA	

*1. Negative values can be up to 10% of positive full scale.

*2. Measurement current accuracy is ±5%.

*3. 20 mV or less when not measuring, with Pulse current mode and Contact Improver set to OFF or Pulse (by 10 MΩ input).

impedance voltmeter)

*4. When VOLTAGE LIMIT is set to ON: 10 V max.

*5. The total of the allowable measurement probe, measurement target, and contact resistance will be less than the resistance value calculated by dividing the no-load voltage by the measurement current.

Example: For a measurement current of 100 mA, measurements can be made under conditions such that the total of the measurement probe, measurement target, and contact resistance does not exceed 20 Ω .

*6. When the average function is ON and the average count is set to 16 or greater. Specified only for 10 m Ω range SLOW operation; otherwise, does not depend on the average setting. (RM3542C-3)

*7. RM3542C-3

*8. RM3542C-1, RM3542C-2 or RM3542C-3

90-day accuracy (RM3542C-3)

LOW POWER: OFF

Range	Max. display *1	f.s.	Measurement accuracy \pm (% rdg. + % f.s.)			Measure- ment current *2	Open-circuit voltage		
			FAST	MED	SLOW				
10 m Ω	12.00000 m Ω	1,000,000 dgt.	0.015 + 0.008	0.015 + 0.030	0.012 + 0.010 ^{*6} 0.012 + 0.020	100 mA	20 V max *3, *4, *5		
100 m Ω	120.0000 m Ω	1,000,000 dgt.	0.015 + 0.008	0.015 + 0.003					
1000 m Ω	1200.000 m Ω	1,000,000 dgt.	0.012 + 0.003	0.012 + 0.002	0.011 + 0.001				
3 Ω	3.60000 Ω	300,000 dgt.	0.012 + 0.003	0.012 + 0.002	0.011 + 0.001				
10 Ω	12.00000 Ω	1,000,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.007 + 0.001				
100 Ω	120.0000 Ω	1,000,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.005 + 0.001				
300 Ω	360.000 Ω	300,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.005 + 0.001				
1000 Ω	1200.000 Ω	1,000,000 dgt.	0.008 + 0.003	0.006 + 0.002	0.005 + 0.001				
10 k Ω	12.00000 k Ω	1,000,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.006 + 0.001				
30 k Ω	36.00000 k Ω	300,000 dgt.	0.009 + 0.003	0.007 + 0.002	0.006 + 0.001				
100 k Ω	120.00000 k Ω	1,000,000 dgt.	0.010 + 0.003	0.007 + 0.002	0.006 + 0.001				
300 k Ω	360.0000 k Ω	300,000 dgt.	0.010 + 0.003	0.007 + 0.002	0.006 + 0.001				
1000 k Ω	1200.0000 k Ω	1,000,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.007 + 0.001				
3 M Ω	3.60000 M Ω	300,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.007 + 0.001				
10 M Ω	12.00000 M Ω	1,000,000 dgt.	0.030 + 0.004						
30 M Ω	36.00000 M Ω	300,000 dgt.	0.030 + 0.010						
100 M Ω	120.00000 M Ω	1,000,000 dgt.	0.100 + 0.020						

LOW POWER: ON

Range	Max. display *1	f.s.	Measurement accuracy \pm (% rdg. + % f.s.)			Measure- ment current *2	Open-circuit voltage
			FAST	MED	SLOW		
1000 m Ω	1200.000 m Ω	1,000,000 dgt.	0.010 + 0.008	0.008 + 0.003	0.007 + 0.002	10 mA	10 V max *3, *5
3 Ω	3.60000 Ω	300,000 dgt.	0.010 + 0.008	0.008 + 0.003	0.007 + 0.002		
10 Ω	12.00000 Ω	1,000,000 dgt.	0.010 + 0.008	0.008 + 0.003	0.007 + 0.002		
100 Ω	120.0000 Ω	1,000,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.007 + 0.001		
300 Ω	360.000 Ω	300,000 dgt.	0.010 + 0.003	0.008 + 0.002	0.007 + 0.001		
1000 Ω	1200.000 Ω	1,000,000 dgt.	0.020 + 0.003	0.008 + 0.002	0.007 + 0.001		

*1. Negative values can be up to 10% of positive full scale.

*2. Measurement current accuracy is $\pm 5\%$.

*3. 20 mV or less when not measuring, with Pulse current mode and Contact Improver set to OFF or Pulse (by 10 M Ω input-impedance voltmeter)

*4. When VOLTAGE LIMIT is set to ON: 10 V max.

*5. The total of the allowable measurement probe, measurement target, and contact resistance will be less than the resistance value calculated by dividing the no-load voltage by the measurement current.

Example: For a measurement current of 100 mA, measurements can be made under conditions such that the total of the measurement probe, measurement target, and contact resistance does not exceed 20 Ω .

*6. When the average function is ON and the average count is set to 16 or greater. Specified only for 10 m Ω range SLOW operation; otherwise, does not depend on the average setting.

(2) Measurement Time (default settings)

Measurement range	LOW POWER: OFF			LOW POWER: ON		
	FAST	MED	SLOW	FAST	MED	SLOW
10 mΩ *1	3.8 ms	13.0 ms	43 ms 36 ms	—	—	—
100 mΩ	3.8 ms	13.0 ms	43 ms 36 ms	—	—	—
1000 mΩ	2.0 ms	6.4 ms	41 ms 35 ms	2.3 ms	12 ms	42 ms 35 ms
3 Ω *2	1.6 ms	6.0 ms	41 ms 34 ms	2.3 ms	12 ms	42 ms 35 ms
10 Ω	1.6 ms	6.0 ms	41 ms 34 ms	2.3 ms	12 ms	42 ms 35 ms
100 Ω	0.9 ms	3.6 ms	21 ms 17 ms	1.7 ms	6.1 ms	41 ms 34 ms
300 Ω *2	0.9 ms	3.6 ms	21 ms 17 ms	3.2 ms	7.6 ms	43 ms 36 ms
1000 Ω	0.9 ms	3.6 ms	21 ms 17 ms	7.2 ms	12 ms	47 ms 40 ms
10 kΩ	1.0 ms	3.6 ms	21 ms 17 ms	—	—	—
30 kΩ *2	0.9 ms	3.6 ms	21 ms 17 ms	—	—	—
100 kΩ	1.3 ms	3.8 ms	21 ms 18 ms	—	—	—
300 kΩ *2	1.3 ms	3.8 ms	21 ms 18 ms	—	—	—
1000 kΩ	2.5 ms	6.0 ms	21 ms 18 ms	—	—	—
3 MΩ *2	2.5 ms	6.0 ms	21 ms 18 ms	—	—	—
10 MΩ	5.3 ms	23 ms 20 ms	23 ms 20 ms	—	—	—
30 MΩ *2	5.8 ms	23 ms 20 ms	23 ms 20 ms	—	—	—
100 MΩ	26 ms 22 ms	46 ms 39 ms	86 ms 72 ms	—	—	—

*1. RM3542C-3

*2. RM3542C-1, RM3542C-2 or RM3542C-3

Upper value: 50 Hz power line frequency

Lower value: 60 Hz power line frequency

Tolerance $\pm 10\% \pm 0.2$ ms

(No retry)

General Specifications

Operating environment	Indoors, Pollution degree 2, up to 2000 m (6562 ft.)
Storage temperature and humidity	-10°C to 50°C (14°F to 122°F), 80% RH or less (no condensation)
Operating temperature and humidity	0°C to 40°C (32°F to 104°F), 80% RH or less (no condensation)
Dielectric strength	1.69 kV AC, 1 min (Cutoff current 10 mA) between all power terminals and protective ground, interfaces, and measurement jacks
Applicable Standards	
Safety	EN 61010
EMC	EN 61326 Class A Effect of radiated radio-frequency electromagnetic field: 3%f.s. at 10 V/m* ¹ Effect of conducted radio-frequency electromagnetic field: 2%f.s. at 10 V* ¹ *1. 10 mΩ range only, influence quantity × 10(RM3542C-3)
Power supply	Rated supply voltage 100 V to 240 VAC (Voltage fluctuations of ±10% from the rated supply voltage are taken into account.) Rated supply frequency: 50 Hz / 60 Hz Anticipated transient overvoltage: 2,500 V Maximum rated power: 30 VA Typical power consumption: 12 W (1 Ω range, COMP indicator ON)
Dimensions	Approx. 260W x 88H x 300D mm (10.2W x 3.5H x 11.8D in.)
Mass	Approx. 2.9 kg (6.4 lb.)
Product warranty period	3 years

Accessories

See:"Accessories" (p. 5)

Options

See:"Options" (p. 6)

Maintenance and Service

Chapter 11

11.1 Troubleshooting

Inspection and Repair

Regular calibration is required in order to ensure the instrument will yield measurement results at the specified degree of accuracy.

Do not modify, dismantle or repair the instrument. Doing so may cause a fire, an electric shock or injury.

NOTE

- If a failure is suspected, check "Before Returning for Repair" (p.222) and then contact your authorized Hioki distributor or reseller.

To transport the instrument

- Use the original packing materials when transporting the instrument.
- Pack the instrument so that it will not sustain damage during shipping, and include a description of existing damages. We do not take any responsibility for damages during shipping.

Replaceable Parts and Operating Lifetimes

The service life of parts varies with the operating environment and frequency of use. Parts are not guaranteed to operate throughout the recommended replacement cycle. For replacement parts, contact your authorized Hioki distributor or reseller.

Part	Life
LCD (to half brightness)	Approx. 50,000 hours
Electrolytic Capacitors	Approx. 10 years
Lithium Battery	Approx. 10 years The instrument contains a built-in backup lithium battery. If the date and time deviate substantially when the instrument is switched on, it is the time to replace that battery. Contact your authorized Hioki distributor or reseller.

If no measurement value is displayed even when the probes are shorted together, internal damage may have occurred. Contact your authorized Hioki distributor or reseller.

Before Returning for Repair

If abnormal operation occurs, check the following items.

Symptom	Check Items	
Nothing is shown on the screen when the power switch is turned on.	<ul style="list-style-type: none"> Is the power cord disconnected? Are the connections made correctly? 	Check that the power cord is connected properly. (p. 24)
Keys do not work.	<ul style="list-style-type: none"> Is any key being held down? Is the instrument in the key-lock state (M.LOCK or F.LOCK is displayed)? Is the remote control communication enabled (RMT is displayed)? Is the EXT. I/O KEY_LOCK signal asserted to Low (ON)? 	Verify the key operation. Cancel Key-Lock: (p. 80) Switch to the local control (p. 130). De-assert the KEY_LOCK signal to High (OFF).
Measurement values are not stable	<ul style="list-style-type: none"> Is the measurement object a power transformer or other large inductance? Are the probes and measuring object adequately shielded? 	"Appendix 3 Unstable Measurement Values" (p. A3)
Measurement values are shifted.	<ul style="list-style-type: none"> Is zero-adjustment ON? Were the CUR and POT terminals connected before contacting the measuring object? Is the measuring object calibrated correctly? Is a current of more than 10 mA not flowing to the GUARD terminal?(The shell of the GUARD terminal and that of the BNC terminal may have made contact) There may be a large thermal emf. 	"3.6 Measuring with Two-terminal Wiring (Zero Adjustment)" (p. 36)
If the cause is unknown	<ul style="list-style-type: none"> Try performing a system reset (p. 88). (All settings are returned to their factory defaults.) 	

11.2 Cleaning

CAUTION

- To clean the instrument, wipe it gently with a soft cloth moistened with water or mild detergent. Never use solvents such as benzene, alcohol, acetone, ether, ketones, thinners or gasoline. Doing so may deform and discolor the case.
- Wipe the LCD gently with a soft, dry cloth.

11.3 Error Displays and Solutions

The following messages are displayed on the screen when the instrument malfunctions or encounters an abnormal measurement state.

If repair is necessary, contact your authorized Hioki distributor or reseller.

Display	Description	Remedy
+OvrRng/-OvrRng	Out-of-Range (p. 44)	Select the appropriate range.
C.E. Hi	Hi wiring contact error (p. 44)	Check for cable breakage and worn out probes.
C.E. Lo	Lo wiring contact error (p. 44)	Check for cable breakage and worn out probes.
C.E. Volt	Voltage Level Monitor Error (p. 44)	Check for worn out probes.
ERR:001 LOW limit is higher than UPP limit.	Upper limit is below lower limit.	Check the comparator settings (p. 38).
ERR:002 [When the Low-Power Resistance Measurement is OFF] Exceeding range. (From 0 Ω to 120 MΩ) [When the Low-Power Resistance Measurement is ON] Exceeding range. (From 0 Ω to 1200 Ω)	Comparator input is out of range. (out-of-range reference value, such as 1000 MΩ)	Check comparator settings (p. 38).
ERR:003 Setting monitor error. (COMP)	The comparator settings are different from the other instrument.	Make the comparator settings the same (p. 64).
ERR:004 Setting monitor error. (SPEED)	The SPEED settings are different from the other instrument.	Make the SPEED settings the same (p. 64).
ERR:011 Zero adjustment error. Offset value exceeds 10 Ω.	Out of zero-adjust range	Check the zero-adjustment procedure (p. 36).
ERR:021 Probe short error	Probe short-circuit	Check if the connections are correct (p. 62).
ERR:031 Command error	Command Error	Check if the commands (p. 141) are correct.
ERR:032 Execution error	Execution Error	Check the last command and instrument status (p. 141).
ERR:033 RS-232C communication error	I/F Communications Error	Check communication settings and wiring.
ERR:034 Setting monitor communication error	Settings monitor communications error	Check the setting monitor settings and wiring (p. 64).
ERR:041 Line frequency detection error	Error detecting the line frequency	Manually set the frequency to match the power line (p. 83).
ERR:042 Clock error Reset?(16-01-01 00:00:00) Press F1 Key.	The clock is not set, so pressing F1[OK] displays the default time as 16-01-01 00:00:00.	The back-up battery needs to be replaced. Contact your authorized Hioki distributor or reseller.
ERR:101 Hardware error (Main CPU ROM)	Hardware error	Repair is required.
ERR:102 Hardware error (Main CPU RAM)	Hardware error	Repair is required.
ERR:103 Hardware error (SRAM)	Hardware error	Repair is required.
ERR:104 Hardware error (Adjustment data)	Hardware error	Repair is required.

11.3 Error Displays and Solutions

Display	Description	Remedy
ERR:105 Hardware error (Backup data) Reset? Press F1 Key.	Hardware failure (back-up data is corrupted)	Repair is required. Press F1[OK] to reset the instrument.
ERR:106 Hardware error (Meas CPU communication)	Hardware error	Repair is required.
ERR:107 Hardware error (Meas CPU ROM)	Hardware error	Repair is required.
ERR:108 Hardware error (Meas CPU RAM)	Hardware error	Repair is required.
ERR:109 Hardware error (Measurement end)	Hardware error	Repair is required.
ERR:110 Hardware error (Zero measurement end)	Hardware error	Repair is required.
ERR:111 Hardware error (F.S. measurement end)	Hardware error	Repair is required.
ERR:112 Hardware error (Calibration)	Hardware error	Repair is required.
ERR:113 Hardware error (Meas CPU A/D data)	Hardware error	Repair is required.
ERR:114 Hardware error (Meas CPU)	Hardware error	Repair is required.
INFO:001 Printing...	Printing in progress.	–
INFO:002 Memory full	Memory full.	Delete stored data.
INFO:011 Zero adjusting...	Zero-adjust in progress.	–
INFO:012 Clearing zero adjustment	Clearing zero-adjust.	–
INFO:021 Clear all memory and statistics data?	Confirm deletion of all memory data. (F1:ANCEL/ F2:YES)	–
INFO:022 Undo memory and statistics data?	Confirm deletion of one memory data item. (F1:ANCEL/ F2:YES)	–
INFO:023 Save and Return? [CANCEL]: Continue to edit.	MISC setting confirmation Returns to the previous screen in the case of CANCEL (F1:ANCEL/ F2:SAVE/ F3:NOSAVE)	–
INFO:024 System Reset?	Confirm system reset. (F1:ANCEL/ F4:YES)	–
INFO:031 Press enter code.	Waiting for key code entry to access adjustment mode.	–
-----	Not measuring When awaiting a trigger after changing the settings, and immediately after power-on.	–

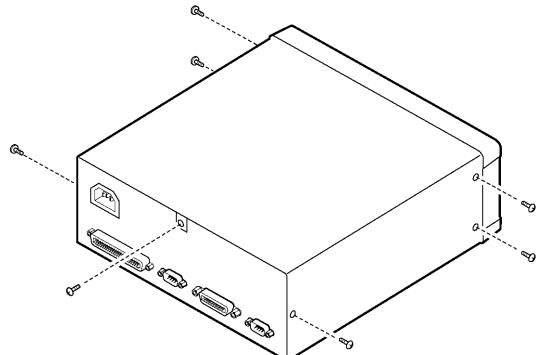
11.4 Disposing of the Instrument

The instrument uses a lithium battery for back-up power to the clock.

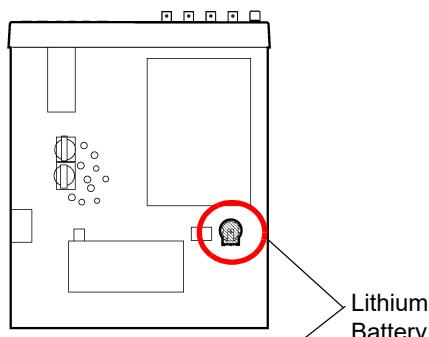
When disposing of this instrument, remove the lithium battery and dispose of battery and instrument in accordance with local regulations.

Removing the Lithium Battery

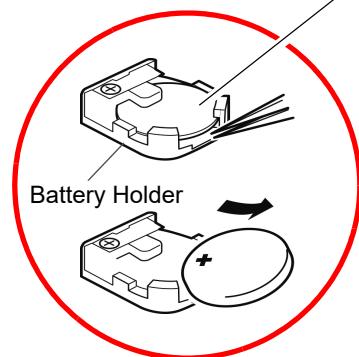
⚠ WARNING


To avoid electric shock, turn off the power button and disconnect the power cord and measurement probes before removing the lithium battery.

⚠ CAUTION


Be careful not to short circuit + and -. Doing so may cause sparking.

Required tools:


- One Phillips screwdriver (No.1)
- One pair of tweezers (to remove the lithium battery)

(Overhead View)

Lithium Battery

Battery Holder

1 Verify that the power to the instrument is OFF, and unplug the power cord, and any other cords or cables.

2 Remove the six screws from the sides and one screw from the rear.

3 Remove the cover.

4 Insert the tip of tweezers between the battery and battery holder as shown in the diagram and lift up on the battery to remove it.

CALIFORNIA, USA ONLY

Perchlorate Material - special handling may apply.
See <https://dtsc.ca.gov/perchlorate/>.

Appendix

Appendix 1 Four-Terminal (Voltage-Drop) Method

The Four-Terminal method is essential for measuring very small resistance values.

With two-terminal measurements (Fig. 1), the resistance of the test leads is included in the measured resistance, resulting in measurement errors.

The Four-Terminal method (Fig. 2) consists of the current source terminals (H_{CUR} , L_{CUR}) for providing a constant current, and the voltage detection terminals (H_{POT} , L_{POT}) for detecting the voltage drop.

Because of the high input impedance of the voltmeter, measurement requires essentially no current flow through the leads connecting the voltage detection terminals to the test object, practically eliminating the effects of lead and contact resistance on the measurement probe.

Two-Terminal Measurement Method

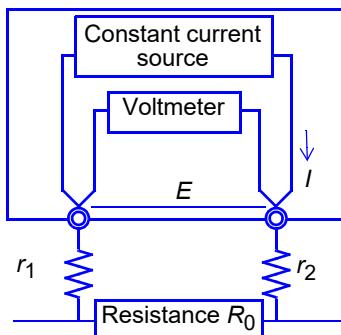


Figure 1

Four-Terminal Measurement Method

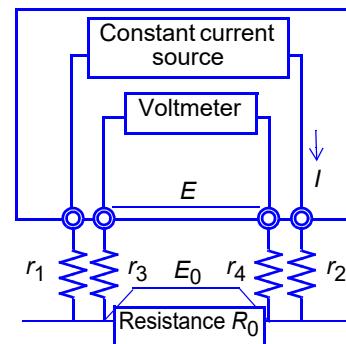
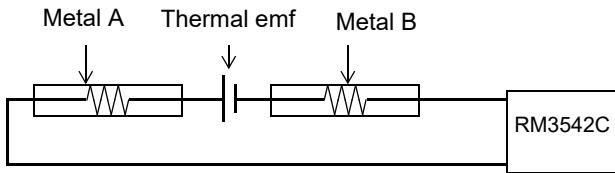


Figure 2


Measurement current I flows through the test object resistance R_0 as well as lead resistances r_1 and r_2 . Therefore, voltage measured will be given by $E = I(r_1+R_0+r_2)$ which includes lead resistances r_1 and r_2 .

Current I flows from r_2 to r_1 through test object resistance R_0 . The voltmeter has an extremely high input resistance, so the measurement current will flow to r_3 and r_4 . Therefore, voltage drop across r_3 and r_4 is zero, and the voltage measured as E across the measurement terminals, and the voltage drop E_0 between the test object resistance R_0 are essentially equal, allowing test object resistance to be measured without being affected by r_1 to r_4 .

Appendix 2 Effect of Thermal emf

Thermal emf is the potential difference that occurs at the junction of two dissimilar metals, which if sufficiently large, can cause erroneous measurements. Because this instrument functions by measuring potential difference while applying a constant direct current through the test object, the effect of thermal emf can affect measurements. The amplitude of thermal emf depends on the temperature of the measurement environment, with the force generally being greater at higher temperature.

Thermal emf typically occurs at any junction of dissimilar metals, including between the test probe tips and the test object.

Measurement discrepancy caused by thermal emf:

(Example)

When the voltage of thermal emf is 10 μ V and the resistance value to be measured is 1 Ω , current in the LP1 Ω range is 10 mA.

Measurement value actually displayed on this instrument will be as follows.

$$(1 \Omega \times 10 \text{ mA} + 10 \mu\text{V}) / 10 \text{ mA} = 1.00100 \Omega$$

On this instrument, the offset voltage compensation (OVC) function is enabled in the ranges from 100 m Ω to 10 Ω and when using the low-power resistance measurement, to minimize the effect of thermal emf.

The offset voltage compensation (OVC) function employs the principle that the following value is known to be a true resistance value from $R_P(>0)$, the value measured with current flowing in the positive direction, and $R_N(<0)$, the value measured with current flowing in the negative direction.

(R_N is a negative value)

$$\frac{R_P - R_N}{2}$$

When the measured object is inductive, some delay (DELAY2) must be set to allow adequate current flow before starting the measurement (p. 48).

Set the delay so that inductance does not affect measurements.

To fine tune the delay, begin with a longer delay than necessary, then gradually shorten it while watching the measurement value.

Appendix 3 Unstable Measurement Values

If the measurement value is unstable, verify the following.

(1) Effect of Noise from Power Supply Lines

Noise from power supply lines arises from commercial power, and not only from power lines or outlets, but also as radiated emissions from fluorescent lights and home appliances. The frequency of the noise from power supply lines depends on the commercial supplied power frequency, and occurs at a frequency of 50 Hz or 60 Hz.

One method typically used to reduce the effects of noise caused by commercial power supplies is to set the measurement time to a whole-number multiple of the power supply cycle.

The instrument provides 3 measurement speed settings: FAST, MEDIUM, and SLOW. With the FAST setting, measurements are not synchronized with the power line period, so high resistance or low-power resistance measurements may become unstable. In such cases, use the SLOW setting or take noise suppression countermeasures.

For high-resistance measurements, connecting the shield to the GUARD potential is helpful.

In low-resistance range and low-power resistance measurement, it is effective not only to shield with the GUARD potential, but also to twist the measurement probe lines together where possible.

Even when the integration time is set by a PLC, measurement values are unstable if the power supply line frequency setting is 60 Hz and the instrument is used in a 50 Hz region. Confirm the line frequency setting of the instrument.

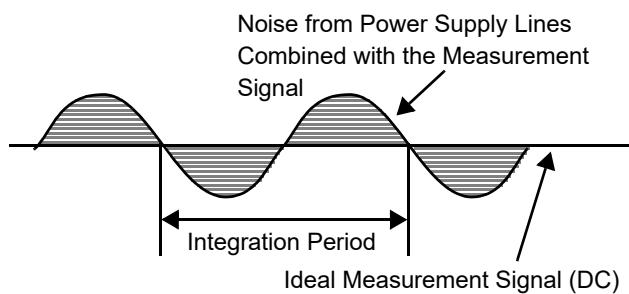


Figure 1. Effect of Noise from Power Supply Lines

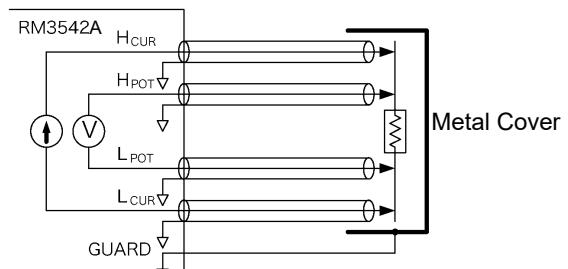


Figure 2. For High-Resistance Measurements

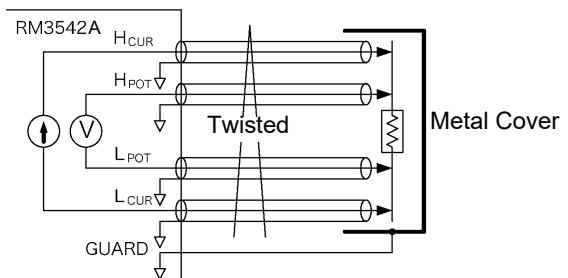


Figure 3. For Low-Power Resistance Measurements

(2) Using Low-Power Resistance Measurement

Low-power resistance measurement employs a smaller measurement current than normal resistance measurements. Therefore, measurements are more susceptible to the effects of external electrical noise and thermal emf.

Appendix 3 Unstable Measurement Values

Measurement should be conducted as far as possible from devices emitting electric or magnetic fields such as power cords, fluorescent lights, solenoid valves and PC displays. If electrical noise ingress is a problem, prepare the measurement leads as shown in Fig. 2 and Fig. 3.

If thermal emf is a problem, use the RM3542C OVC function. If OVC cannot be used for reasons such as tact time limitations, use a low-thermal emf material such as copper for wiring, and protect against airflow on connecting parts (test object or connectors).

(3) Multi-Point Contacts with Clip Type Probes

The ideal conditions for four-terminal measurements are shown in Fig. 4: current flows from the far probe and voltage is detected with uniform current distribution.

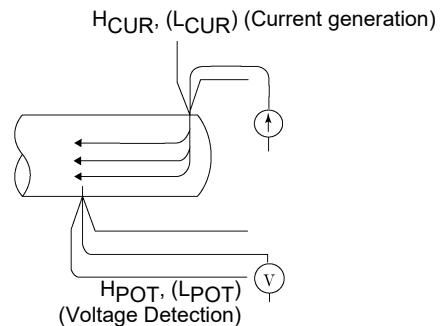


Figure 4. Ideal Four-Terminal Method

To facilitate measurement, the tips of the Model Hioki 9140-10 4-Terminal Probe are jagged. As shown in Fig. 5 (enlarged view of probe tip contact area), the measurement current flows from multiple points, and the voltages are detected at multiple points. In such cases, the measurement value varies according to the total contact area.

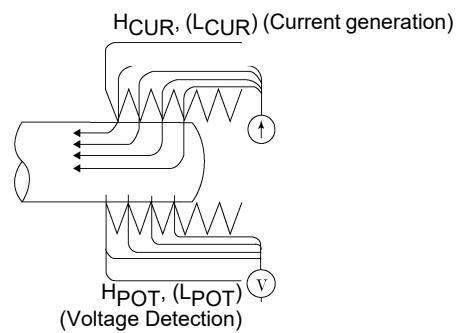


Figure 5. Measurement with Model 9140 4-Terminal Probe

Additionally, as shown in Fig. 6, when measuring the resistance of approximately a 100 mm length of wire, the length between the nearest edges of the clips is 100 mm, but the length between the farthest edges of the clips is 110 mm, so the actual measurement length (and value) has an uncertainty of 10 mm (10%). If measurement values are unstable for any of these reasons, maximize stability by measuring with point contacts as far as possible.

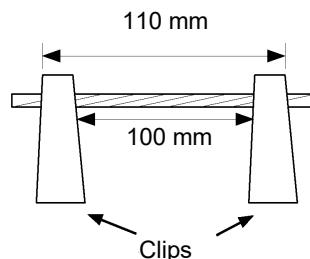


Figure 6. Measuring the resistance of a 100 mm length of wire

(4) Wider/Thicker DUTs

If the measuring object has a certain width or thickness like boards or blocks, it will be difficult to measure it accurately using Clip Type Probes or Pin Type Probes. By using such measurement probes, there may be considerable fluctuation of the measurement value due to contact pressure or contact angle.

For example, when measuring a W300 x L370 x t0.4 mm metal plate, the measurement values are fairly different, even if measuring the same points, as shown below:

0.2 mm pitch Pin Type Probe: 1.1 mΩ
0.5 mm pitch Pin Type Probe: 0.92 to 0.97 mΩ
Model 9287-10 Clip Type Lead: 0.85 to 0.95 mΩ

This does not depend on the contact resistance between probes and the measuring object, but on the current distribution of the measuring object.

Figure 7. is an example plot of equipotential line for a metal plate. Similar to the relation between atmospheric pressure distribution and wind on a weather forecast diagram, current density is higher in locations where the equipotential lines are narrowly spaced, and lower in locations where they are widely spaced. The figure illustrates how the electric potential gradient varies significantly near the point at which current is injected. This variation is due to the fact that the current is in the process of spreading out into the metal plate, increasing the current density in that area. For this reason, when the voltage detection terminals are placed close to the point at which current is injected, minute changes in the position of contact are associated with significant changes in the measured value.

It is known that such effects can be minimized by detecting the voltage within the space between the current injection points. Generally, if the distance between the voltage detection points and their corresponding current injection points is greater than the width (W) or thickness (t) of the DUT, current distribution may be considered uniform.

As shown in Fig. 8, it is desirable for the POT terminals to be positioned at least 3W or 3t inside the CUR terminals.

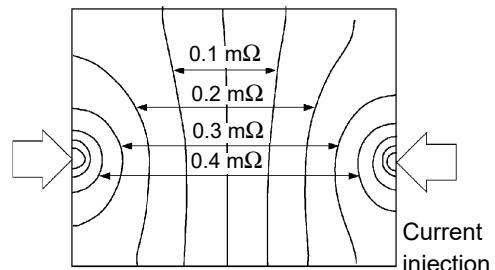


Figure 7. Equipotential line of the metal plate
(W300 mm x L370 mm x t0.4 mm)

*Apply a current of 1 A to the end point and plot the equipotential line for 50 μ V levels

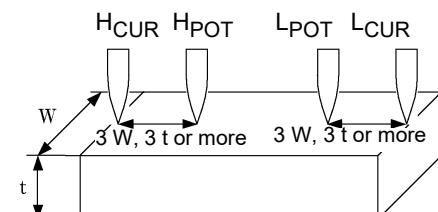


Figure 8. Probe Positions for Wider/Thicker measuring objects

(5) Unstable Temperature of the DUT

Copper wire resistance has a temperature coefficient of about 0.4%/°C. Just holding a copper wire in the hand raises its temperature, causing its resistance to be increased as well. When the hand is removed from the wire, temperature and resistance decrease. Varnished windings are more susceptible to temperature increase, so the resistance tends to be relatively high. If the temperature of the measured object is different from that of the probe, thermal emf occurs and causes an error. Try to measure after the temperature of the measured object becomes close to that of room temperature. Use an instrument with a temperature-compensation function such as the Hioki RM3544, RM3545 and RM3548 to minimize temperature dependence of copper etc.

(6) The Sample Becomes Warm

The maximum applied power to a measuring object by this instrument is determined as follows.

The resistance of samples with small thermal capacity can change due to heating. In such cases, set the low-power resistance measurement to ON.

Range	Measurement current	The maximum applied power (Measuring object resistance) x (Measurement current) ²	
		VOLTAGE LIMIT: OFF	VOLTAGE LIMIT: ON
100 mΩ	100 mA	1.2 mW	1.2 mW
1000 mΩ	100 mA	12 mW	12 mW
3 Ω	33.3 mA	4 mW	4 mW
10 Ω	10 mA	1.2 mW	1.2 mW
100 Ω	10 mA	12 mW	12 mW
300 Ω	3.33 mA	4 mW	4 mW
1000 Ω	1 mA	1.2 mW	1.2 mW
10 kΩ	1 mA	12 mW	12 mW
30 kΩ	333 μA	4 mW	1.7 mW
100 kΩ	100 μA	1.2 mW	0.5 mW
300 kΩ	33.3 μA	400 μW	170 μW
1000 kΩ	10 μA	120 μW	50 μW
3 MΩ	3.33 μA	40 μW	17 μW
10 MΩ	1 μA	12 μW	5 μW
30 MΩ	333 nA	4 μW	1.7 μW
100 MΩ	100 nA	1.2 μW	0.5 μW
LP	1000 mΩ	10 mA	120 μW
LP	3 Ω	3.33 mA	40 μW
LP	10 Ω	1 mA	12 μW
LP	100 Ω	1 mA	120 μW
LP	300 Ω	333 μA	40 μW
LP	1000 Ω	100 μA	12 μW

(7) Ingress of External Noise

Measurement should be conducted as far as possible from devices emitting electric or magnetic fields such as power cords, fluorescent lights, solenoid valves and PC displays. If electrical noise ingress is a problem, prepare the measurement leads as shown in Fig. 9.

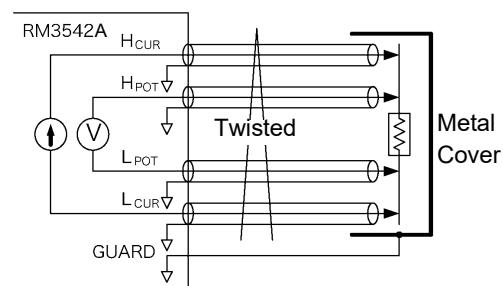


Figure 9. Wiring to Minimize Noise Ingress

(8) Measuring Transformers and Motors

If noise enters an unconnected terminal of a transformer or if motor rotor moves, measurements may be unstable due to induced voltage on the measured winding. Pay attention to the treatment of unconnected terminals on transformers or to motor vibration.

(9) Measuring Large Transformers or Motors

When measuring high-inductance (high-Q) DUTs such as large transformers or motors, measurement values may be unstable. The RM3542C depends on constant current flow through the DUT, but producing constant current becomes impossible as inductance approaches infinity. To obtain stability in a constant-current source with a large inductance, response time is sacrificed. If you find that resistance values are scattered when measuring large transformers or motors, please consider the above or contact your local Hioki distributor for further assistance.

(10) Non-Four-Terminal Measurements

The four-terminal method requires that four probes be connected to the DUT.

By measuring as shown in Fig.10, the measured resistance includes that of the contacts between the probes and DUT.

Typical contact resistance is several milliohm with gold plating, and several tens of milliohm with nickel plating.

With measurement values of several $k\Omega$, this would not seem to be a problem, but if a probe tip is oxidized or dirty, contact resistance of the order of $k\Omega$ is not unusual.

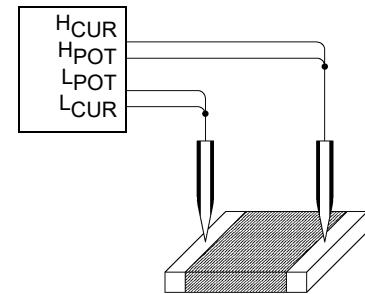


Figure 10. Two-Terminal Measurement

To maximize proper measurements, emulate the four-terminal method as closely as possible to the contact points of the sample shown in Figure 11.

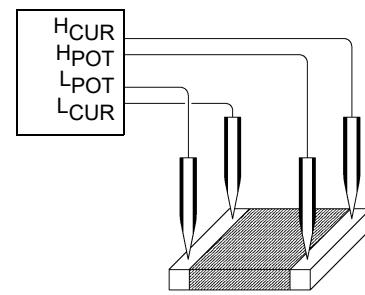
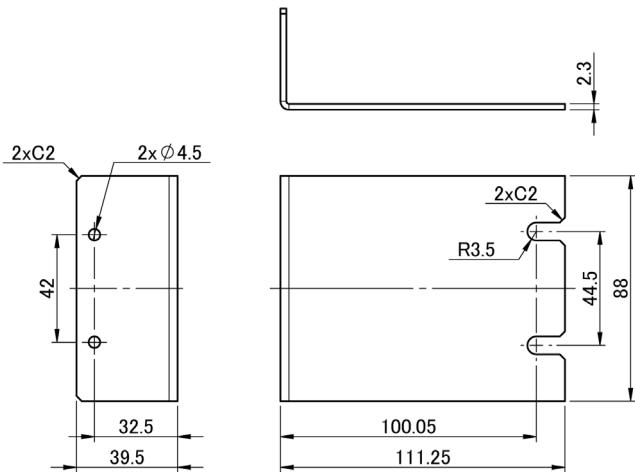


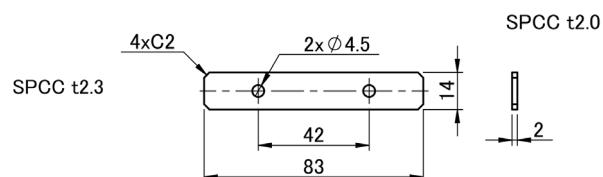
Figure 11. Four-Terminal Measurement

Appendix 4 Rack Mounting

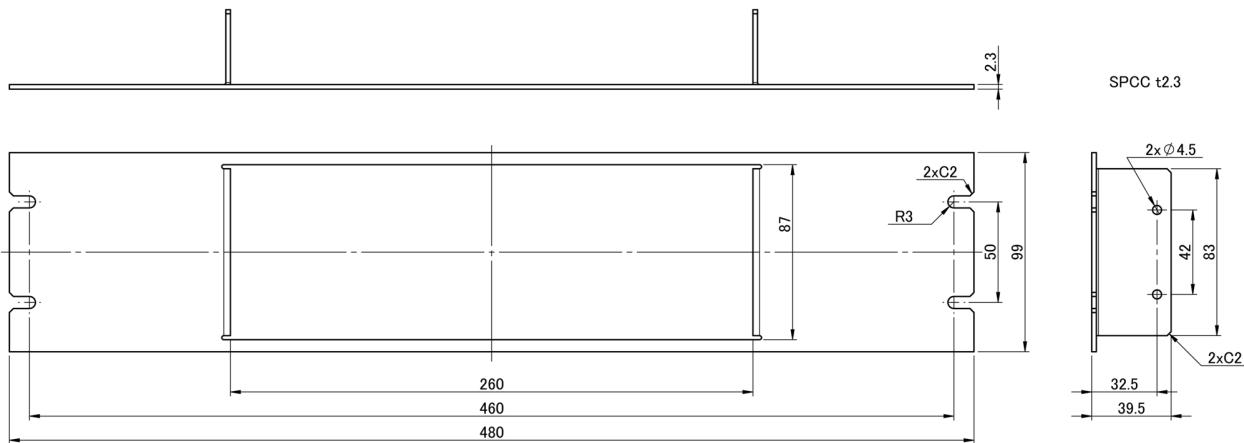
Rack-mounting hardware can be attached to the instrument after removing the screws on the sides.

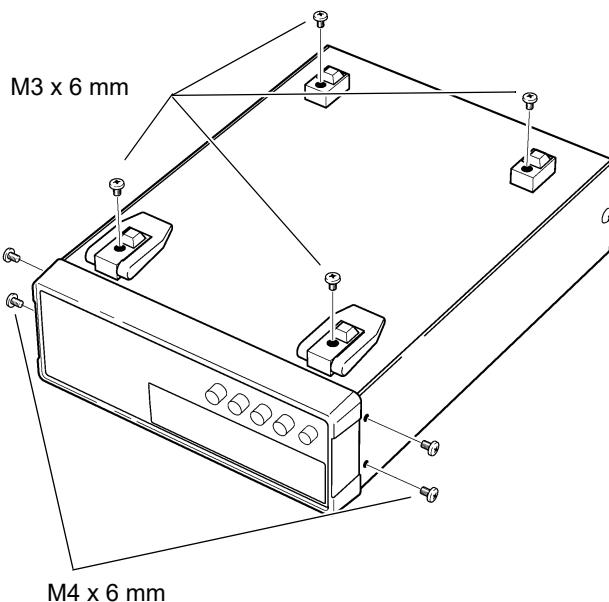

⚠️ WARNING

Observe the following precautions regarding the mounting screws to avoid instrument damage and electric shock accidents.

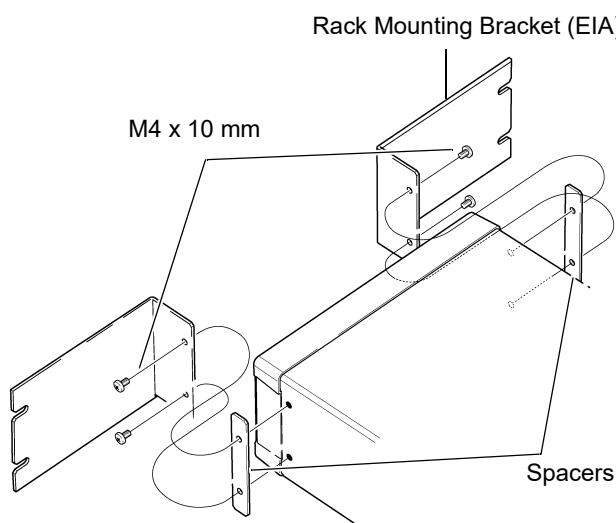

- When installing the Rack Mounting Plate, the screws must not intrude more than 3.5 mm into either side of the instrument.
- When removing the Rack Mounting Plate to return the instrument to stand-alone use, replace the same screws that were installed originally.
(Supporting leg: M3 x 6 mm, side: M4 x 6 mm)

Rack Mounting Plate Reference Figures and Installation Procedures

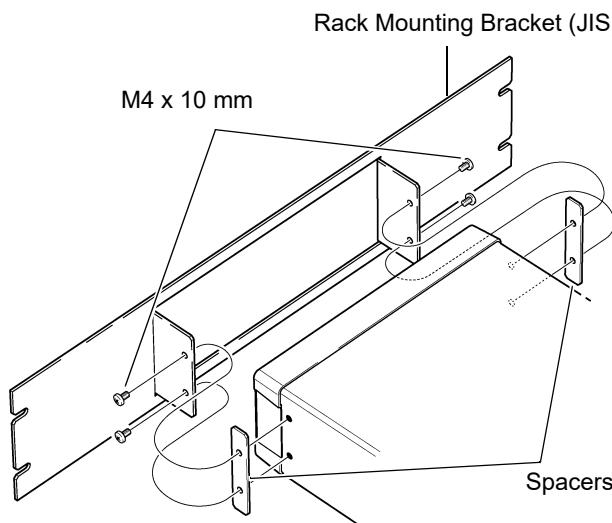

Rack Mounting Bracket (EIA)



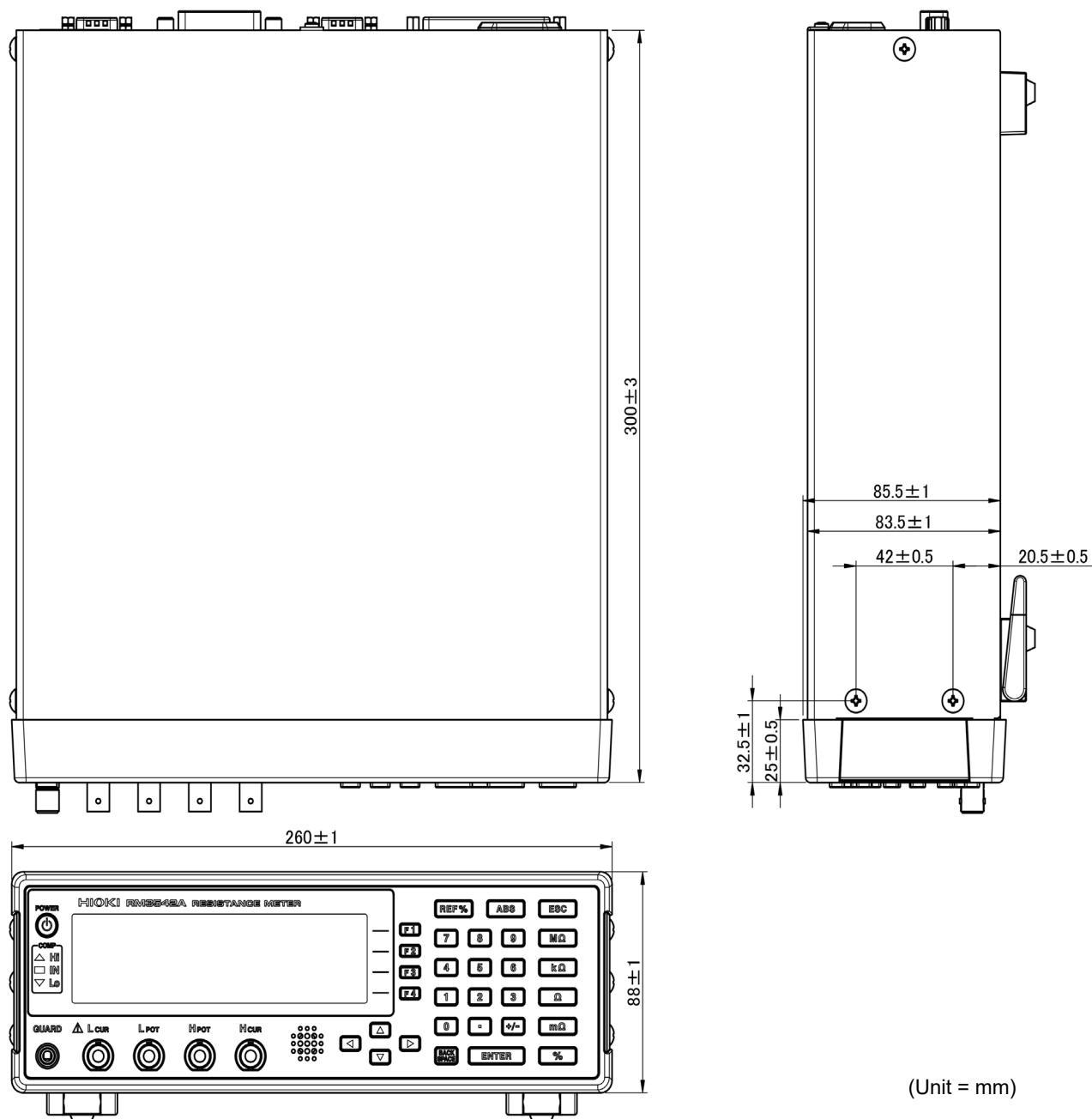
Spacer (Two Required)



Rack Mounting Bracket (JIS)



1 Remove the feet from the bottom of the instrument, and the screws from the sides (four near the front).



2 Insert the spacers on both sides of the instrument, attach the Rack Mounting Brackets with the M4 x 10 mm screws.

When installing in a rack, support it by a stand or other commercially available items.

Appendix 5 Dimensional diagram

Appendix 6 Calibration

Calibration Conditions

Ambient temperature and humidity	23°C ±5°C, 80% RH or less
Warm-up time	30 minutes
Power source	From 100 V to 240 V ±10%, 50 Hz/60 Hz
Measurement speed	SLOW
Integration time	Default setting
Contact improver	OFF (Required when using the Fluke 5700A)
Measurement current	CONT (Required when using the Fluke 5700A)
Probe short-circuit detection	OFF
0ADJ	OFF (necessary)
External magnetic field	Environment close to the Earth's magnetic field
Voltage level monitor	OFF (Required when using the Fluke 5700A)

Calibration equipment

Please use the following for calibration equipment.

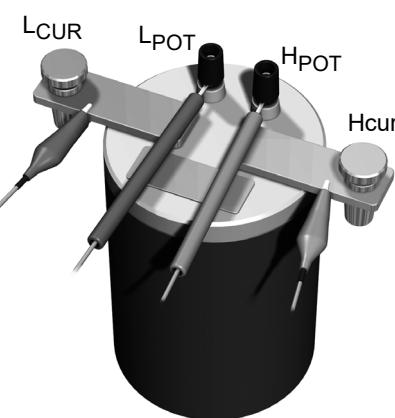
See: "Connection Methods" (p. A12)

Resistance measurement equipment

- Fluke 5700A (10 Ω or more) or equivalent
- Alpha Electronics CSR-R10 (100 mΩ or equivalent)
- Alpha Electronics CSR-1R0 (1 Ω or equivalent)

If the Fluke 5700A cannot be used, please use the following equipment.

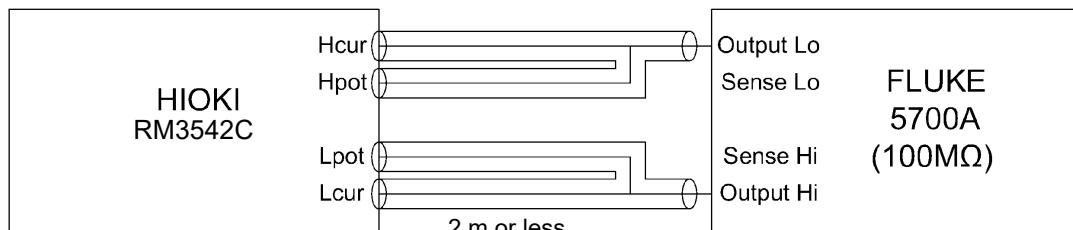
Alpha Electronics product

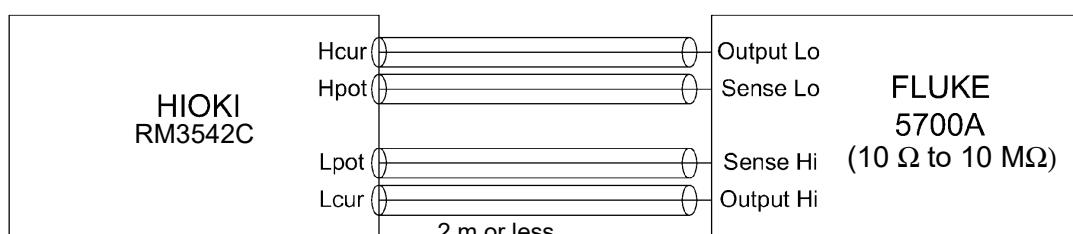

• CSR-100 (10 Ω)	• CSR-105 (1 MΩ)
• CSR-101 (100 Ω)	• CSR-106 (10 MΩ)
• CSR-102 (1 kΩ)	• CSR-107 (100 MΩ)
• CSR-103 (10 kΩ)	•
• CSR-104 (100 kΩ)	•

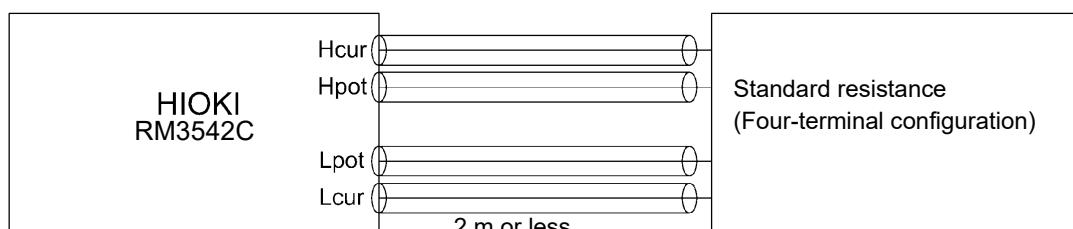
When using the YOKOGAWA 2792 for calibration

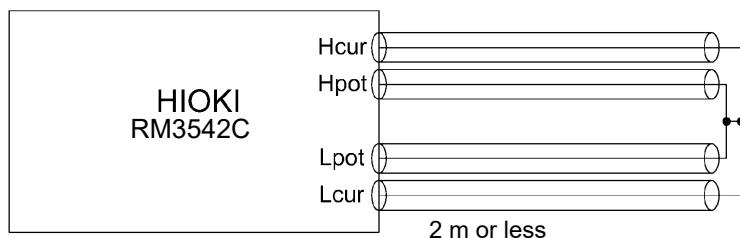
Connect four terminals separately to calibrate, as shown in the following figure.

Note that calibration cannot be performed with the Clip Type Probe, such as 9140-10.


Correct


Wrong


Connection Methods


Calibration using Fluke 5700A at $100\text{ M}\Omega$

Calibration using Fluke 5700A at $10\text{ }\Omega$ to $10\text{ M}\Omega$

Calibration using standard resistance

0- Ω calibration

NOTE

When calibrating using the Fluke 5700A, measurement values may change during self-calibration (once every 10 minutes).

Appendix 7 Adjustment

The System screen includes an adjustment screen.

The Adjustment screen is used by Hioki for repair and adjustment purposes. It is not for customer use.

Appendix 8 Table of Comparison Commands ADEX AX-162D / for this instrument

Description	Model AX-162D (Original mode)			Model RM3542C		
	Command	Query	Data	Command	Query	Data
Measure- ment mode setting	Mm	-	<i>m</i> = 0/ D (% mode)/1/ R (R mode)	:CALCulate:LIMIT:MODE <i>m</i>	-	<i>m</i> = REF% (REF mode)/ ABS (ABS mode)
	M?	XANS1 ,Mm		:CALCulate:LIMIT:MODE?	<i>m</i>	
Measure- ment range setting	RNG<i>r</i>	-	<i>r</i> = 0 to 9	:RESistance:RANGE <i>r</i>	-	<i>r</i> = 0 to 120E+6
	RNG?	XANS1 ,RNG<i>r</i>		:RESistance:RANGE?	<i>r</i>	
Reference resistor set- ting	RS<i>float</i>	-	<i>float</i> = 500E-5 to 10900E+4	:CALCulate:LIMIT:REFer- ence <i>float</i>	-	<i>float</i> = 0 to 120.000E+6
	RS?	XANS1 ,RS<i>float</i>		:CALCulate:LIMIT:REFer- ence?	<i>float</i>	
% mode upper and lower limit values setting	LH<i>float1</i>	-	<i>float1</i> = -9999E-2 to 9999E-2	:CALCulate:LIMIT:PER-- Cent <i>float1, float2</i>	<i>float1,</i> <i>float2</i>	<i>float1</i> = -99.990 to 99.990
	LH?	XANS1 ,LH<i>float1</i>				
	LL<i>float2</i>	-	<i>float2</i> = -9999E-2 to 9999E-2	:CALCulate:LIMIT:PER-- Cent?	<i>float1,</i> <i>float2</i>	<i>float2</i> = -99.990 to 99.990
	LL?	XANS1 ,LL<i>float2</i>				
R mode upper and lower limit values setting	LH<i>float1</i>	-	<i>float1</i> = 00001E-5 to 20000E+4	:CALCulate:LIMIT:ABS <i>float1, float2</i>	<i>float1,</i> <i>float2</i>	<i>float1</i> = 0 to 120.000E+6
	LH?	XANS1 ,LH<i>float1</i>				
	LL<i>float2</i>	-	<i>float2</i> = 00001E-5 to 20000E+4	:CALCulate:LIMIT:ABS?	<i>float1,</i> <i>float2</i>	<i>float2</i> = 0 to 120.000E+6
	LL?	XANS1 ,LL<i>float2</i>				
Shift range up command	SFTRNGU	-		(Multiple commands)		<i>r1</i> = <i>r</i> x 10
				:RESistance:RANGE?	<i>r</i>	
				:RESistance:RANGE <i>r1</i>	-	
Shift range down command	SFTRNGD	-		(Multiple commands)		<i>r1</i> = <i>r</i> /10
				:RESistance:RANGE?	<i>r</i>	
				:RESistance:RANGE <i>r1</i>	-	
Measure- ment speed setting	Ss	-	<i>s</i> = 0 (SLOW mode)/ 1 (FAST mode)	:SPEED <i>s</i>	-	<i>s</i> = FAST/ MEDIUM/ SLOW
Trigger	E	-		*TRG	-	

Note: This instrument cannot accept continuous commands (a delimiter is necessary between multiple commands).

Appendix 8 Table of Comparison Commands ADEX AX-162D / for this instrument**Example 1**

Measurement function: R mode
 Measurement ranges: 10 Ω
 Upper limit: 1.900 Ω
 Lower limit: 1.100 Ω
 Measurement speed: SLOW
 Trigger after the above settings

AX-162D (Original mode)	RM3542C
M1	:CALCulate:LIMIT:MODE ABS
RNG2	:RESistance:RANGe 10
LH1900E-3	:CALCulate:LIMIT:ABS 1900E-3,1100E-3
LL1100E-3	
S0	:SPEED SLOW
E	*TRG

or

M1RNG2LH1900E-3LL1100E-3S0E

Note: Although no delimiters are shown, they must be included at the end of each command line.

Example 2

Measurement function: % mode
 Reference resistance: 100 kΩ (Measurement range: 100 kΩ)
 Upper limit: 10.00%
 Lower limit: -10.00%
 Measurement speed: FAST
 Trigger after the above settings

AX-162D (Original mode)	RM3542C
M0	:CALCulate:LIMIT:MODE REF
RS100E+3	:RESistance:RANGE 100E+3
LH+1000E-2	:CALCulate:LIMIT:REFERENCE 100E+3
LL-1000E-2	:CALCulate:LIMIT:PERCent +1000E-2,-1000E-2
S1	:SPEED FAST
E	*TRG

or

M0RS100E+3LH+1000E-2LL-1000E-2S1E

Note:

Although no delimiters are shown, they must be included at the end of each command line.
 Even when the reference standard resistance is set on this instrument, the range is not automatically selected.

Use the range setting command to set the same value as the reference standard resistance.
 When setting the same value as the reference standard resistance using the range setting command, there are cases in which the range is different from the instrument's auto-ranging selection, depending on the value.

Appendix 9 Zero Adjustment

Zero adjustment is a function which adjusts the zero point by deducting the residual value obtained during $0\ \Omega$ measurement. For this reason, zero adjustment must be performed when the connection is made to $0\ \Omega$. However, connecting a sample with no resistance is difficult and therefore is not practical.

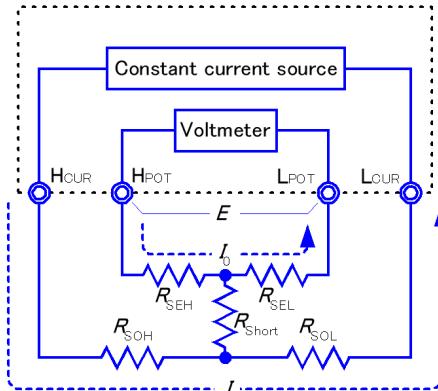
When performing the actual zero adjustment, create a pseudo connection to $0\ \Omega$ and then adjust the zero point.

To create the $0\ \Omega$ connection state

If an ideal $0\ \Omega$ connection is made, according to Ohm's Law, $E = I \times R$, the voltage between H_{POT} and L_{POT} becomes $0\ V$. In other words, if you set the voltage between H_{POT} and L_{POT} to $0\ V$, this gives you the same state of $0\ \Omega$ connection.

To perform zero adjustment using the instrument

The instrument uses a measurement fault detection function to monitor the state of connection between the four measurement terminals.


For this reason, when performing zero adjustment, you need to make connections between the terminals appropriately in advance (Figure 1).

First, in order to set the voltage between H_{POT} and L_{POT} to $0\ V$, short between H_{POT} and L_{POT} . If the probe lead resistances $R_{SEH} + R_{SEL}$ are less than a few Ω , there will be no problem. This is because the POT terminal is a voltage measurement terminal in which the current I_0 rarely flows and is in the relational expression, $E = I_0 \times (R_{SEH} + R_{SEL})$, $I_0 = 0$. Therefore, voltage between H_{POT} and L_{POT} becomes almost 0 if the lead resistance of R_{SEH} and R_{SEL} is a few Ω .

Next, connect H_{CUR} and L_{CUR} . This is to avoid display of error when no measurement current flows through. The lead resistance of the probes in use ($R_{SOH} + R_{SOL}$) must be less than or equal to the resistance at which the measurement current will flow.

Furthermore, when monitoring the connection status between POT and CUR, POT and CUR must be connected. It will not be problematic for the wiring resistance of the probes in use (R_{Short}) to be on the order of several ohms.

When wired as described above, the measurement current I flowing from H_{CUR} will flow to L_{CUR} and not to the H_{POT} or L_{POT} wires. This enables the voltage between H_{POT} and L_{POT} to be kept accurately at $0\ V$, and the appropriate zero adjustment becomes possible.

$$\begin{aligned}
 E &= (I_0 \times R_{SEL}) + (I_0 \times R_{SEH}) \\
 &= (0 \times R_{SEL}) + (0 \times R_{SEH}) \\
 &= 0\ [V]
 \end{aligned}$$

Figure 1. Pseudo connection to $0\ \Omega$

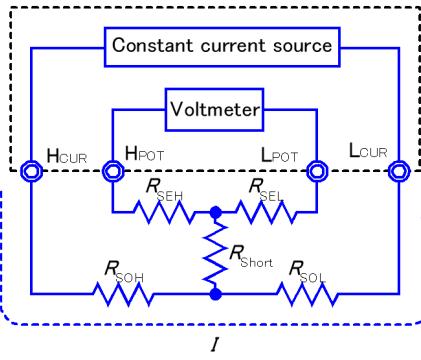
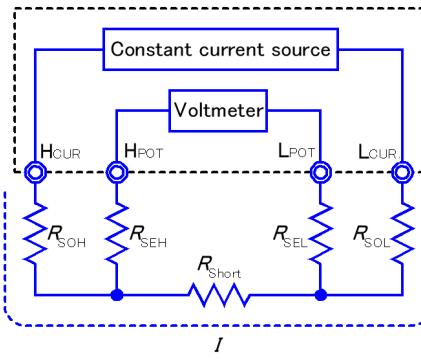
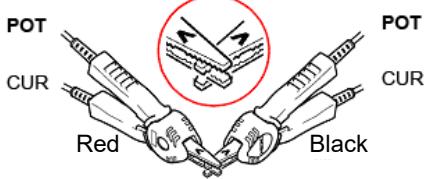
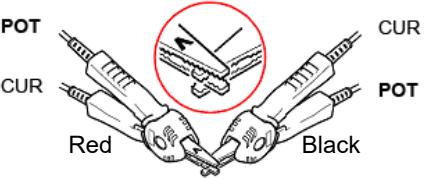
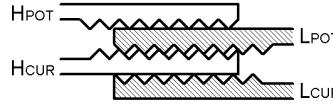
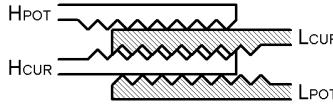
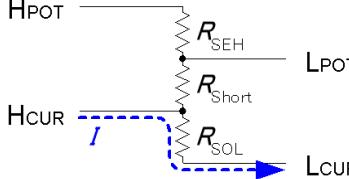
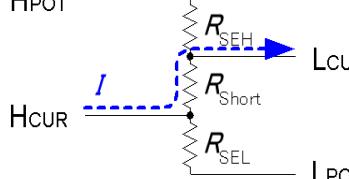
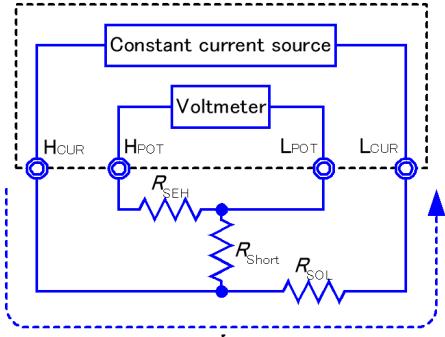
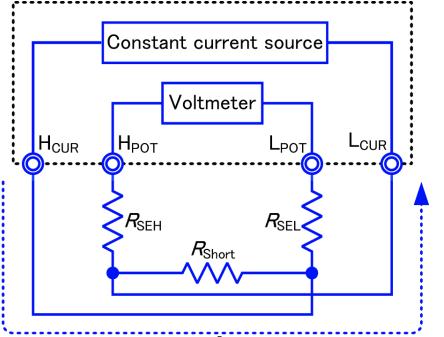


To perform zero adjustment appropriately

Table 1 shows the correct and incorrect connections. The resistances in the figure indicate lead resistances; there will be no problem if they are less than a few Ω respectively.

As in (a), when H_{POT} and L_{POT} , and H_{CUR} and L_{CUR} are connected respectively, and if POT and CUR are connected in a circuit, a potential difference will not be generated between H_{POT} and L_{POT} and 0 V is input. This enables zero adjustment to be carried out correctly.

On the other hand, as in (b), when H_{POT} and H_{CUR} , and L_{POT} and L_{CUR} are connected respectively, and if Hi and Lo are connected in a circuit, the voltage of $I \times R_{Short}$ will be generated between H_{POT} and L_{POT} . For this reason, the pseudo 0 Ω connection state cannot be achieved and zero adjustment cannot be carried out correctly.

Table 1: Connection Methods









Connection Methods	 (a) Use one point each between POT-CUR for connection	 (b) Use one point each between Hi and Lo for connection
Resistance between H_{POT} and L_{POT}	$R_{SEH} + R_{SEL}$	$R_{SEH} + R_{Short} + R_{SEL}$
Flow path of measurement current I	$R_{SOH} \rightarrow R_{SOL}$	$R_{SOH} \rightarrow R_{Short} \rightarrow R_{SOL}$
Voltage generated between H_{POT} and L_{POT}	0	$I \times R_{Short}$
As connection method for zero adjustment	Correct	Wrong

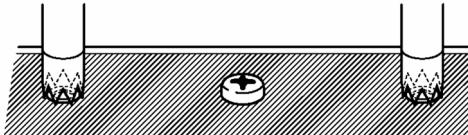
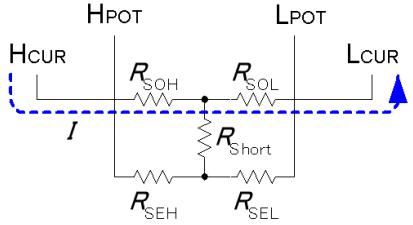
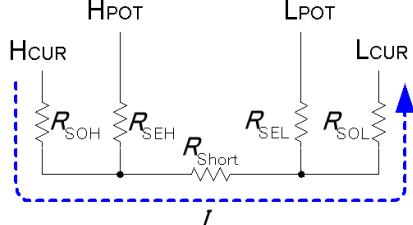
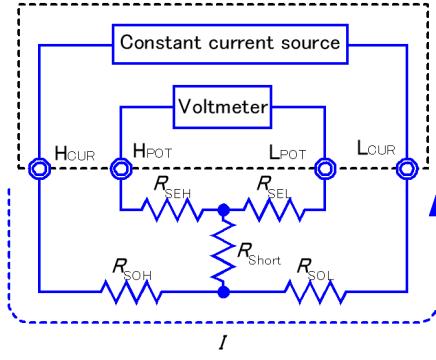
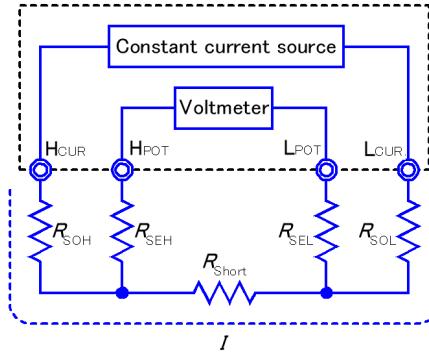
To perform zero adjustment using a probe

When you actually perform zero adjustment using a probe, you may unexpectedly create the connection shown in Table 1 (b). Therefore, when performing zero adjustment, you need to pay sufficient attention to the connection state of each terminal.

9287-10 Clip Type Lead Here, is used as an example for the explaining the connection. Table 2 shows the connection state of the tip of the lead and equivalent circuit in the respective correct and wrong connections. As indicated above, a correct connection method will be as shown in Table 1 (a), and the voltage between H_{POT} and L_{POT} will be 0 V. However, a wrong connection will be as shown in Table 1 (b), and the voltage between H_{POT} and L_{POT} will not be 0 V.

Table 2: Clip type lead connection methods used during zero adjustment

Connection Methods	Correct	Wrong
Tip of lead		
Equivalent circuit		
Deformed equivalent circuit		
As connection method for zero adjustment	Correct	Wrong






To perform zero adjustment using 9454 Zero Adjustment Board

When performing zero adjustment, you cannot use a metal board or similar object to replace 9454 Zero Adjustment Board.

9454 Zero Adjustment Board is not just a metal board. Its structure consists of two metal boards screwed together at one point. The zero adjustment board is used when performing zero adjustment of 9465 Pin Type Lead.

Table 3 shows cross sectional diagrams and equivalent circuits of the two connection methods: connecting Pin Type Lead to zero adjustment board, and connecting that to a metal board or similar object. When using the zero adjustment board, connection will be as shown in Table 1 (a), resulting in 0 V between H_{POT} and L_{POT} . However, Table 1 (b) shows the connection using a metal board etc., and 0 V is not obtained between H_{POT} and L_{POT} .

Table 3: Pin type lead connection methods in zero adjustment

Connection Methods	If the connection is made using a 9454 Zero Adjustment Board	If the connection is made using a metal board etc
Tip of lead		
Equivalent circuit		
Deformed equivalent circuit		
As connection method for zero adjustment	Correct	Wrong

If zero adjustment is difficult when using self-made probe to measure

When you perform zero adjustment using a self-made probe to do the measurement, connect the tip of the self-made probe as shown in Table 1 (a). However, if connection as shown in Table 1 (a) is difficult, you can try the following methods.

If DC resistance meter is used

The main purpose of performing zero adjustment is to remove offset of the measurement instrument. For this reason, the value to be deducted as a result of zero adjustment almost does not depend on the probe. Therefore, after using the standard probe to make the connection shown in Table 1 (a) and performing zero adjustment, you can replace it with a self-made probe to measure with the offset removed from the measurement instrument.

If AC resistance meter is used

In addition to removing offset of the measurement instrument, another main purpose of performing zero adjustment is to remove influence of the probe shape. For this reason, when performing zero adjustment, try as much as possible to position and set the form of the self-made probe close to the measurement state. Then, you need to make the connection as shown in Table 1 (a) and perform zero adjustment.

However, when a Hioki product is used, even in the AC resistance measurement, if the required resolution exceeds $100 \mu\Omega$, the same zero adjustment method used with the DC resistance meter may be sufficient.

Index

Number

0ADJ 110

A

ABS 38
 Absolute value judgment 38
 Accuracy 217
 Adjustment A 13
 Applied Voltage Limiter Function 69
 Auto-exporting 99, 100
 Auto-Memory Function 91, 93
 Auto-Range 34, 205
 Manual Range 35
 Average Function 54

B

Backlight 87
 Backup function 27
 Basic Settings screen 19, 21
 BIN Measurement Function 78
 Binary 129
 Block diagram 16
 Broken measurement cables 55

C

C.E. Hi 44, 55, 223
 C.E. Lo 44, 55, 223
 C.E. Volt 44, 60, 223
 CAL 110
 Calibration A 11
 CE_HI 110
 CE_LO 110
 Clock 85
 Command
 Command Message 131
 Command Error 137, 141
 Command execution time 141
 Command Syntax 131
 Communications 127
 Comparator Function 38
 Comparator judgment 38, 82
 Comparator judgment beeper 82
 Comparator mode 38
 Contact Check Fault 44
 Contact Check Function 55

Contact Improvement Function (Contact Improver) 57

Continuous measurement 33, 169
 Crossover wiring 126
 Current Mode Setting Function 61
 Current Monitor Fault 44
 Current Monitor Function 45

D

Data exporting methods 184
 Data Formats 133
 Data Memory Function 91, 92, 173
 Data Memory Setting screen 19, 21
 Data Output Function 91, 99, 100
 DATA SETTINGS 19, 21
 Default settings 89
 DELAY 48
 Delay Function 48
 Delay time 48
 Delimiter 132
 Device clear 134, 140
 Dimensional diagram A 10
 Disposing 225

E

Edge 119
 EOM 111
 ERR 110, 223
 Error displays 223
 Estimated Delay time 49
 Event registers 137
 Device-Specific Event Status Registers
 (ESR0 and ESR1) 138
 Standard Event Status Register (SESR) 137
 Execution Error 137, 141
 EXT I/O Connector 108
 EXT. I/O Connector 122
 EXT. I/O 107
 Wiring Diagram 117
 EXT.I/O 215
 External Control
 Q&A 121
 External trigger 33

F

F.LOCK 79

Index 2

Index

Fixed-point data	133
Floating-point exponential representation data	133
Four-Terminal	A 1
Free-run	33, 121, 169
Frequency	83
FULL	79

G

GP-IB interface	123, 216
-----------------------	----------

H

Headers	131, 132
Omission	134
HI	111
HOLD	110

I

IN	111
INDEX	111
INFO	224
Initialization Items (communication)	140
Initializing	88
Input buffer	134
Inspection	29, 221
INT	33
Integer data	133
Integration Time	52, 206
Internal Circuitry	115
Internal trigger	33

J

Jumper Resistance Measurement Support Function	71
--	----

K

Key Beeper	81
Key Operation	
Abnormal Operation.	222
KEY_LOCK	110
Key-Lock Cancel	80
Key-Lock Function	79

L

Line Frequency	83
LO	111
LOCAL	130, 166
long form	131
LOW POWER	30
Low-Power Resistance Measurement	30, A 3

M

M.LOCK	79
Mean	96
MEAS SETTINGS	19, 21
Measure automatically	33
Measurement fault	44
Measurement faults	110, 121
Measurement flow	169
Measuring object	30
Measurement Probes	25
When extending	26
Measurement range	32, 34, 47, 203
Normal display (measurement screen)	19
Measurement Settings screens	19
Measurement settings	29
Measurement Settings screens	21
Measurement Speed	31, 52
Measurement time	32, 219
Measurement value	
Store as soon as measurement is stable	93
Storing data	92
unstable and errors	26
Unstable measurement or errors	A 1, A 2, A 3
Measurement Value Format	129, 171
Measurement values	
Unstable	A 3
Measurement values are shifted.	222
Measurement values Unstable	222
Memory Function	91, 173
Message terminators	132

N

Noise	26
Normal display (measurement screen)	20
NR1	133
NR2	133
NR3	133
NRf	133

O

Offset Voltage Compensation (OVC) Function	70
Open work	45
Out-of-range	44
Out-of-Range Detection Function	45
Output Queue	134
Output Signals	110
OVC	70
OvrRng	38, 44, 223

P

Percentage Output Function	100
PLC	52, 207

Poor or improper contact	55
Population standard deviation	96
POWER button	27
Power cord	24
Power inlet	24
PRB_CHECK	110
PRB_SHORT	110
Preset Function	84
PRINT	105, 110
Printer	101, 216
Printing	101, 105
Probe Short-Circuit Detection	62
Process capability index	
bias	96
Variation	96
Program message	131

Q

Query error	123, 134, 137, 141
Query Messages	131

R

Rack Mounting	A 8
Range	32, 34, 47, 219
REF%	38
Reference value	38
Relative value judgment	38
Remote	130
Repair	221
Reset	88
Response Messages	131
Retry Function	67
RS-232C	123, 215

S

Screen contrast	86
Self calibration	110
Self-test	27, 29
Separators	133
Service Request	135
SET MONITOR	64, 74, 216
Settings Monitor Function	64
short form	131
Short-circuited probes	62
Signal pinouts	108
Standard deviation of sample	96
Standard Event Status Register	137
STAT	97
Statistical calculation results	98
Statistical calculation results Printing	105
Statistical Calculations	96, 97
Status Byte Register	135, 136
SYSTEM	19, 22

System screens	19, 22
----------------------	--------

T

Test fixtures	25
Text	129
Thermal emf	70, A 2
Timing chart	112
DELAY1/ DELAY2	48
EXT. I/O	112
Probe short-circuit detection	62
Tolerance range	38
Transmission speed	124
TRG	97, 155
TRIG	110, 119
Trigger Source	33, 169
Triggering system	169

U

UNLOCK	79
upper and lower threshold values	38
uring	50

V

Voltage Level Monitor Function	60
Voltage Monitor fault	44

W

When Zero Adjustment Fails	37
Wiring	26

Z

Zero Adjustment	36, 110, A 16
ΔR Function	73

Index 4

Index

HIOKI
www.hioki.com/

All regional
contact
information

HIOKI E.E. CORPORATION
81 Koizumi, Ueda, Nagano 386-1192 Japan

2402 EN

Edited and published by HIOKI E.E. CORPORATION

Printed in Japan

- Contents subject to change without notice.
- This document contains copyrighted content.
- It is prohibited to copy, reproduce, or modify the content of this document without permission.
- Company names, product names, etc. mentioned in this document are trademarks or registered trademarks of their respective companies.

Europe only

- EU declaration of conformity can be downloaded from our website.
- Contact in Europe: HIOKI EUROPE GmbH
Helfmann-Park 2, 65760 Eschborn, Germany hioki@hioki.eu