고주파 유전율 측정 (20~110 GHz) ## FPOR110.1 제이스/메타사이트 ### FPOR50/80/110 (20~110 GHz) QWED offers a novel type of a **Fabry-Perot open resonator** (FPOR) with Gaussian mirrors for automated broadband and precise resonant measurements of electromagnetic properties of low-loss dielectric sheets in the **20-110 GHz** frequency range. The FPOR system is equipped with a specialized **software** controlling the measurement process and extracting complex permittivity of the material under test from the measured frequency and quality factor. The whole measurement setup consists of a computer, where the aforementioned control software is installed, connected to the FPOR and to measurement equipment (either VNA or scalar Q-Meter). The FPOR operates at consecutive TEM_{0,0,q} Gaussian odd modes spaced every **1.5 GHz**. Due to a sophisticated adaptive algorithm implemented in the control software dedicated to precise and robust tracking of the modes during the measurement, total measurement time usually does not exceed 10 minutes. Fabry-Perot Open Resonator Measurement setup Measurement results (PET, $t = 100 \mu m$) The system allows measuring samples with the following properties: - 1. **dielectric constant**: $\varepsilon' = 1 \dots 15$ (accuracy: $\Delta \varepsilon' / \varepsilon' < 0.5\%$) - 2. **loss tangent**: $tan\delta < 10^{-2}$ (accuracy: $\Delta tan\delta/tan\delta < 2\%$) for $tan\delta < 10^{-5}$ only dielectric constant can be measured. - thickness: 50µm 3mm - 4. diameter: >75mm Exemplary measurement results ### FPOR50/80/110 (20~110 GHz) #### Parameters of a Fabry-Perot Open Resonator (FPOR) | Application | FPOR is intended for the measurements of the complex permittivity of low-loss laminar dielectric materials. | |--|--| | Accuracy of measurements | $\Delta \varepsilon / \varepsilon = \pm 0.5\%$ for $\varepsilon = 115$ | | | ∆tanδ/tanδ = ±2% for tanδ ≤ 2% | | Operational frequency range | 20-110 GHz The upper frequency depends on the network analyzer, so it is usually one of the following: 50 GHz, 67 GHz or 110 GHz. | | Operational temperature range | Room temperature | | Additional equipment needed to perform measurement | Vector Network Analyser (e.g. Keysight, N5245A) and National Instruments 488.2 GPIB controller or LAN, scalar Q-Meter. | | Measurement procedure | The whole measurement is automated and controlled via dedicated software installed on a PC computer. At first, resonant frequencies and Q-factors of TEM _{0,0,q} odd modes of the empty resonator are measured. Afterwards, sample is inserted onto the holder and all the modes of interest are adaptively sought for and the changed resonant frequencies and Q-factors are measured in order to extract dielectric constant and loss tangent by comparing the results with a look-up table computed with a dedicated FPOR electromagnetic model. | | Additional information | The thickness of the sample should be in the 50µm – 3mm range, while the diameter should exceed 75 mm. | #### Limitations Due to coupling with spurious modes that slightly alter resonant frequencies of the measured modes, the thickness of the sample of known dielectric constant is limited as shown in the Figure. ### **Options** | FPOR50.1 | 20~50 GHz | |-----------|------------| | FPOR80,1 | 20~80 GHz | | FPOR110.1 | 20~110 GHz | www.gwed.eu